全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

gga-miR-375 Plays a Key Role in Tumorigenesis Post Subgroup J Avian Leukosis Virus Infection

DOI: 10.1371/journal.pone.0090878

Full-Text   Cite this paper   Add to My Lib

Abstract:

Avian leukosis is a neoplastic disease caused in part by subgroup J avian leukosis virus J (ALV-J). Micro ribonucleic acids (miRNAs) play pivotal oncogenic and tumour-suppressor roles in tumour development and progression. However, little is known about the potential role of miRNAs in avian leukosis tumours. We have found a novel tumour-suppressor miRNA, gga-miR-375, associated with avian leukosis tumorigenesis by miRNA microarray in a previous report. We have also previously studied the biological function of gga-miR-375; Overexpression of gga-miR-375 significantly inhibited DF-1 cell proliferation, and significantly reduced the expression of yes-associated protein 1 (YAP1) by repressing the activity of a luciferase reporter carrying the 3′-untranslated region of YAP1. This indicates that gga-miR-375 is frequently downregulated in avian leukosis by inhibiting cell proliferation through YAP1 oncogene targeting. Overexpression of gga-miR-375 markedly promoted serum starvation induced apoptosis, and there may be the reason why the tumour cycle is so long in the infected chickens. In vivo assays, gga-miR-375 was significantly downregulated in chicken livers 20 days after infection with ALV-J, and YAP1 was significantly upregulated 20 days after ALV-J infection (P<0.05). We also found that expression of cyclin E, an important regulator of cell cycle progression, was significantly upregulated (P<0.05). Drosophila inhibitor of apoptosis protein 1 (DIAP1), which is related to caspase-dependent apoptosis, was also significantly upregulated after infection. Our data suggests that gga-miR-375 may function as a tumour suppressor thereby regulating cancer cell proliferation and it plays a key role in avian leukosis tumorigenesis.

References

[1]  Payne LN, Howes K, Gillespie AM, Smith LM (1992) Host range of Rous sarcoma virus pseudotype RSV(HPRS-103) in 12 avian species: support for a new avian retrovirus envelope subgroup, designated J. J Gen Virol 73 (Pt11): 2995–2997. doi: 10.1099/0022-1317-73-11-2995
[2]  Payne LN, Gillespie AM, Howes K (1991) Induction of myeloid leukosis and other tumours with the HPRS-103 strain of ALV. Vet Rec 129: 447–448. doi: 10.1136/vr.129.20.447
[3]  Payne LN (1998) Retrovirus-induced disease in poultry. Poult Sci 77: 1204–1212. doi: 10.1093/ps/77.8.1204
[4]  Payne LN, Gillespie AM, Howes K (1992) Myeloid leukaemogenicity and transmission of the HPRS-103 strain of avian leukosis virus. Leukemia 6: 1167–1176. doi: 10.2307/1591671
[5]  Gao Y, Yun B, Qin L, Pan W, Qu Y, et al. (2012) Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China. J Clin Microbiol 50: 953–960. doi: 10.1128/jcm.06179-11
[6]  Cui Z, Sun S, Zhang Z, Meng S (2009) Simultaneous endemic infections with subgroup J avian leukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens. Avian Pathol 38: 443–448. doi: 10.1080/03079450903349188
[7]  Payne LN, Nair V (2012) The long view: 40 years of avian leukosis research. Avian Pathol 41: 11–19. doi: 10.1080/03079457.2011.646237
[8]  Gao YL, Qin LT, Pan W, Wang YQ, Le Qi X, et al. (2010) Avian leukosis virus subgroup J in layer chickens, China. Emerg Infect Dis 16: 1637–1638. doi: 10.3201/eid1610.100780
[9]  Cheng ZQ, Zhang L, Liu SD, Zhang LJ, Cui ZZ (2005) [Emerging of avian leukosis virus subgroup J in a flock of Chinese local breed]. Wei Sheng Wu Xue Bao 45: 584–587.
[10]  Fadly AM, Smith EJ (1999) Isolation and some characteristics of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in the United States. Avian Dis 43: 391–400. doi: 10.2307/1592636
[11]  Payne LN, Gillespie AM, Howes K (1993) Recovery of acutely transforming viruses from myeloid leukosis induced by the HPRS-103 strain of avian leukosis virus. Avian Dis 37: 438–450. doi: 10.2307/1591671
[12]  Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103: 2257–2261. doi: 10.1073/pnas.0510565103
[13]  Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, et al. (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26: 462–469. doi: 10.1038/nbt1392
[14]  Zhang X, Yan Z, Zhang J, Gong L, Li W, et al. (2011) Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann Oncol 22: 2257–2266. doi: 10.1093/annonc/mdq758
[15]  Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854. doi: 10.1016/0092-8674(93)90529-y
[16]  Xia L, Zhang D, Du R, Pan Y, Zhao L, et al. (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123: 372–379. doi: 10.1002/ijc.23501
[17]  Fassan M, Sachsenmeir K, Rugge M, Baffa R (2011) Role of miRNA in distinguishing primary brain tumors from secondary tumors metastatic to the brain. Front Biosci (Schol Ed) 3: 970–979. doi: 10.2741/201
[18]  Lotterman CD, Kent OA, Mendell JT (2008) Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle 7: 2493–2499. doi: 10.4161/cc.7.16.6452
[19]  Yang Y, Li X, Yang Q, Wang X, Zhou Y, et al. (2010) The role of microRNA in human lung squamous cell carcinoma. Cancer Genet Cytogenet 200: 127–133. doi: 10.1016/j.cancergencyto.2010.03.014
[20]  Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, et al. (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801. doi: 10.1056/nejmoa050995
[21]  Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114. doi: 10.1038/nrg2290
[22]  Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297. doi: 10.1016/s0092-8674(04)00045-5
[23]  Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226–230. doi: 10.1038/nature03076
[24]  Ding L, Xu Y, Zhang W, Deng Y, Si M, et al. (2010) MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 20: 784–793. doi: 10.1038/cr.2010.79
[25]  Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, et al. (2010) MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 70: 2339–2349. doi: 10.1158/0008-5472.can-09-2777
[26]  Abdelmohsen K, Hutchison ER, Lee EK, Kuwano Y, Kim MM, et al. (2010) miR-375 inhibits differentiation of neurites by lowering HuD levels. Mol Cell Biol 30: 4197–4210. doi: 10.1128/mcb.00316-10
[27]  Liu AM, Poon RT, Luk JM (2010) MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties. Biochem Biophys Res Commun 394: 623–627. doi: 10.1016/j.bbrc.2010.03.036
[28]  Li Y, Xu X, Liang Y, Liu S, Xiao H, et al. (2010) miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int J Clin Exp Pathol 3: 254–264.
[29]  Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy SM, et al. (2009) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 10: 512. doi: 10.1186/1471-2164-10-512
[30]  Lee JY, Jeong W, Kim JH, Kim J, Bazer FW, et al. (2012) Distinct expression pattern and post-transcriptional regulation of cell cycle genes in the glandular epithelia of avian ovarian carcinomas. PLoS One 7: e51592. doi: 10.1371/journal.pone.0051592
[31]  Lian L, Qu L, Chen Y, Lamont SJ, Yang N (2012) A systematic analysis of miRNA transcriptome in Marek's disease virus-induced lymphoma reveals novel and differentially expressed miRNAs. PLoS One 7: e51003. doi: 10.1371/journal.pone.0051003
[32]  Stik G, Dambrine G, Pfeffer S, Rasschaert D (2013) The oncogenic microRNA OncomiR-21 overexpressed during Marek's disease lymphomagenesis is transactivated by the viral oncoprotein Meq. J Virol 87: 80–93. doi: 10.1128/jvi.02449-12
[33]  Wang Q, Gao Y, Ji X, Qi X, Qin L, et al. (2013) Differential expression of microRNAs in avian leukosis virus subgroup J-induced tumors. Vet Microbiol 162: 232–238. doi: 10.1016/j.vetmic.2012.10.023
[34]  Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH, et al. (2008) MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol 82: 4007–4015. doi: 10.1128/jvi.02659-07
[35]  Li H, Ji J, Xie Q, Shang H, Zhang H, et al. (2012) Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus. Virus Res 169: 268–271. doi: 10.1016/j.virusres.2012.07.003
[36]  Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, et al. (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347: 1566–1575. doi: 10.1056/nejmoa021153
[37]  Nolo R, Morrison CM, Tao C, Zhang X, Halder G (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 16: 1895–1904. doi: 10.1016/j.cub.2006.08.057
[38]  Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, et al. (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 103: 12405–12410. doi: 10.1073/pnas.0605579103
[39]  Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98: 453–463. doi: 10.1016/s0092-8674(00)81974-1
[40]  Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773. doi: 10.1038/nature03315
[41]  Su H, Yang JR, Xu T, Huang J, Xu L, et al. (2009) MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 69: 1135–1142. doi: 10.1158/0008-5472.can-08-2886
[42]  Chen CY, Xie QM, Xue Y, Ji J, Chang S, et al. (2012) Characterization of cytotoxicity-related gene expression in response to virulent Marek's disease virus infection in the bursa of Fabricius. Res Vet Sci.
[43]  Nishikawa E, Osada H, Okazaki Y, Arima C, Tomida S, et al. (2011) miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 71: 6165–6173. doi: 10.1158/0008-5472.can-11-1020
[44]  Harvey K, Tapon N (2007) The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer 7: 182–191. doi: 10.1038/nrc2070
[45]  Saucedo LJ, Edgar BA (2007) Filling out the Hippo pathway. Nat Rev Mol Cell Biol 8: 613–621. doi: 10.1038/nrm2221
[46]  Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, et al. (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17: 2054–2060. doi: 10.1016/j.cub.2007.10.039
[47]  Zhao B, Wei X, Li W, Udan RS, Yang Q, et al. (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21: 2747–2761. doi: 10.1101/gad.1602907
[48]  Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, et al. (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125: 1253–1267. doi: 10.1016/j.cell.2006.05.030
[49]  Song H, Mak KK, Topol L, Yun K, Hu J, et al. (2010) Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A 107: 1431–1436. doi: 10.1073/pnas.0911409107
[50]  Zhou D, Conrad C, Xia F, Park JS, Payer B, et al. (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16: 425–438. doi: 10.1016/j.ccr.2009.09.026
[51]  Wang K, Degerny C, Xu M, Yang XJ (2009) YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem Cell Biol 87: 77–91. doi: 10.1139/o08-114
[52]  Bertini E, Oka T, Sudol M, Strano S, Blandino G (2009) YAP: at the crossroad between transformation and tumor suppression. Cell Cycle 8: 49–57. doi: 10.4161/cc.8.1.7259
[53]  Zhao B, Li L, Lei Q, Guan KL (2010) The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24: 862–874. doi: 10.1101/gad.1909210
[54]  Oka T, Sudol M (2009) Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells 14: 607–615. doi: 10.1111/j.1365-2443.2009.01292.x
[55]  Oka T, Mazack V, Sudol M (2008) Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem 283: 27534–27546. doi: 10.1074/jbc.m804380200
[56]  Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, et al. (2001) Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276: 15164–15173. doi: 10.1074/jbc.m010484200
[57]  Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96: 245–254. doi: 10.1016/s0092-8674(00)80564-4
[58]  Raff MC (1992) Social controls on cell survival and cell death. Nature 356: 397–400. doi: 10.1038/356397a0
[59]  Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306. doi: 10.1016/s0074-7696(08)62312-8
[60]  Xu S, Xue C, Li J, Bi Y, Cao Y (2011) Marek's disease virus type 1 microRNA miR-M3 suppresses cisplatin-induced apoptosis by targeting Smad2 of the transforming growth factor beta signal pathway. J Virol 85: 276–285. doi: 10.1128/jvi.01392-10
[61]  Yoo SJ, Huh JR, Muro I, Yu H, Wang L, et al. (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4: 416–424. doi: 10.1038/ncb793
[62]  Yokokura T, Dresnek D, Huseinovic N, Lisi S, Abdelwahid E, et al. (2004) Dissection of DIAP1 functional domains via a mutant replacement strategy. J Biol Chem 279: 52603–52612. doi: 10.1074/jbc.m409691200
[63]  Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83: 1253–1262. doi: 10.1016/0092-8674(95)90150-7
[64]  Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19: 589–597. doi: 10.1093/emboj/19.4.589
[65]  Lisi S, Mazzon I, White K (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154: 669–678.
[66]  Edgar BA (2006) From cell structure to transcription: Hippo forges a new path. Cell 124: 267–273. doi: 10.1016/j.cell.2006.01.005
[67]  Dulic V, Lees E, Reed SI (1992) Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257: 1958–1961. doi: 10.1126/science.1329201
[68]  Koff A, Giordano A, Desai D, Yamashita K, Harper JW, et al. (1992) Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689–1694. doi: 10.1126/science.1388288
[69]  Dulic V, Drullinger LF, Lees E, Reed SI, Stein GH (1993) Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. Proc Natl Acad Sci U S A 90: 11034–11038. doi: 10.1073/pnas.90.23.11034
[70]  Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M (1995) Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15: 2612–2624.
[71]  Keyomarsi K, O'Leary N, Molnar G, Lees E, Fingert HJ, et al. (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54: 380–385.
[72]  Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122: 421–434. doi: 10.1016/j.cell.2005.06.007
[73]  Mays JK, Pandiri AR, Fadly AM (2006) Susceptibility of various parental lines of commercial white leghorn layers to infection with a naturally occurring recombinant avian leukosis virus containing subgroup B envelope and subgroup J long terminal repeat. Avian Dis 50: 342–347. doi: 10.1637/7493-121505r.1
[74]  Maas HJ, De Boer GF, Groenendal JE (1982) Age related resistance to avian leukosis virus. III. Infectious virus, neutralising antibody and tumours in chickens inoculated at various ages. Avian Pathol 11: 309–327. doi: 10.1080/03079458208436103
[75]  Rubin H, Fanshier L, Cornelius A, Hughes WF (1962) Tolerance and immunity in chickens after congenital and contact infection with an avian leukosis virus. Virology 17: 143–156. doi: 10.1016/0042-6822(62)90091-0
[76]  Baba TW, Humphries EH (1985) Formation of a transformed follicle is necessary but not sufficient for development of an avian leukosis virus-induced lymphoma. Proc Natl Acad Sci U S A 82: 213–216. doi: 10.1073/pnas.82.1.213

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133