全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The BRCA1 Variant p.Ser36Tyr Abrogates BRCA1 Protein Function and Potentially Confers a Moderate Risk of Breast Cancer

DOI: 10.1371/journal.pone.0093400

Full-Text   Cite this paper   Add to My Lib

Abstract:

The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.

References

[1]  Hofmann W, Schlag PM (2000) BRCA1 and BRCA2—breast cancer susceptibility genes. J Cancer Res Clin Oncol 126: 487–496. doi: 10.1007/s004320000140
[2]  Evans DG, Shenton A, Woodward E, Lalloo F, Howell A, et al. (2008) Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a Clinical Cancer Genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer 8: 155. doi: 10.1186/1471-2407-8-155
[3]  Ford D, Easton DF, Stratton M, Narod S, Goldgar D, et al. (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62: 676–689. doi: 10.1086/301749
[4]  Chen S, Iversen ES, Friebel T, Finkelstein D, Weber BL, et al. (2006) Characterization of BRCA1 and BRCA2 mutations in a large United States sample. J Clin Oncol 24: 863–871. doi: 10.1200/jco.2005.03.6772
[5]  Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, et al. (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72: 1117–1130. doi: 10.1086/375033
[6]  Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, et al. (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250: 1684–1689. doi: 10.1126/science.2270482
[7]  Chapman MS, Verma IM (1996) Transcriptional activation by BRCA1. Nature 382: 678–679. doi: 10.1038/382678a0
[8]  Chen Y, Farmer AA, Chen CF, Jones DC, Chen PL, et al. (1996) BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res 56: 3168–3172.
[9]  Monteiro AN, August A, Hanafusa H (1996) Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci U S A 93: 13595–13599. doi: 10.1073/pnas.93.24.13595
[10]  Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4: 511–518. doi: 10.1016/s1097-2765(00)80202-6
[11]  Scully R, Chen J, Plug A, Xiao Y, Weaver D, et al. (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88: 265–275. doi: 10.1016/s0092-8674(00)81847-4
[12]  Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, et al. (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14: 430–440. doi: 10.1038/ng1296-430
[13]  Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, et al. (2002) Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20: 1480–1490. doi: 10.1200/jco.20.6.1480
[14]  Kurian AW (2010) BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol 22: 72–78. doi: 10.1097/gco.0b013e328332dca3
[15]  Thompson D, Easton DF, Goldgar DE (2003) A full-likelihood method for the evaluation of causality of sequence variants from family data. Am J Hum Genet 73: 652–655. doi: 10.1086/378100
[16]  Deffenbaugh AM, Frank TS, Hoffman M, Cannon-Albright L, Neuhausen SL (2002) Characterization of common BRCA1 and BRCA2 variants. Genet Test 6: 119–121. doi: 10.1089/10906570260199375
[17]  Gomez-Garcia EB, Ambergen T, Blok MJ, van den Wijngaard A (2005) Patients with an unclassified genetic variant in the BRCA1 or BRCA2 genes show different clinical features from those with a mutation. J Clin Oncol 23: 2185–2190. doi: 10.1200/jco.2005.07.013
[18]  Osorio A, de la Hoya M, Rodriguez-Lopez R, Martinez-Ramirez A, Cazorla A, et al. (2002) Loss of heterozygosity analysis at the BRCA loci in tumor samples from patients with familial breast cancer. Int J Cancer 99: 305–309. doi: 10.1002/ijc.10337
[19]  Mirkovic N, Marti-Renom MA, Weber BL, Sali A, Monteiro AN (2004) Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition. Cancer Res 64: 3790–3797. doi: 10.1158/0008-5472.can-03-3009
[20]  Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, et al. (2004) Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41: 492–507. doi: 10.1136/jmg.2003.015867
[21]  Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, et al. (2006) Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43: 295–305. doi: 10.1136/jmg.2005.033878
[22]  Goldgar DE, Easton DF, Deffenbaugh AM, Monteiro AN, Tavtigian SV, et al. (2004) Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75: 535–544. doi: 10.1086/424388
[23]  Chenevix-Trench G, Healey S, Lakhani S, Waring P, Cummings M, et al. (2006) Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res 66: 2019–2027. doi: 10.1158/0008-5472.can-05-3546
[24]  Osorio A, Milne RL, Honrado E, Barroso A, Diez O, et al. (2007) Classification of missense variants of unknown significance in BRCA1 based on clinical and tumor information. Hum Mutat 28: 477–485. doi: 10.1002/humu.20470
[25]  Easton DF, Deffenbaugh AM, Pruss D, Frye C, Wenstrup RJ, et al. (2007) A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81: 873–883. doi: 10.1086/521032
[26]  Spurdle AB, Lakhani SR, Healey S, Parry S, Da Silva LM, et al. (2008) Clinical classification of BRCA1 and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis—a report from the kConFab Investigators. J Clin Oncol 26: 1657–1663. doi: 10.1200/jco.2007.13.2779
[27]  Goldgar DE, Easton DF, Byrnes GB, Spurdle AB, Iversen ES, et al. (2008) Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat 29: 1265–1272. doi: 10.1002/humu.20897
[28]  Gomez Garcia EB, Oosterwijk JC, Timmermans M, van Asperen CJ, Hogervorst FB, et al. (2009) A method to assess the clinical significance of unclassified variants in the BRCA1 and BRCA2 genes based on cancer family history. Breast Cancer Res 11: R8. doi: 10.1186/bcr2223
[29]  Spearman AD, Sweet K, Zhou XP, McLennan J, Couch FJ, et al. (2008) Clinically applicable models to characterize BRCA1 and BRCA2 variants of uncertain significance. J Clin Oncol 26: 5393–5400. doi: 10.1200/jco.2008.17.8228
[30]  Millot GA, Carvalho MA, Caputo SM, Vreeswijk MP, Brown MA, et al. (2012) A guide for functional analysis of BRCA1 variants of uncertain significance. Hum Mutat 33: 1526–1537. doi: 10.1002/humu.22150
[31]  Morris JR, Pangon L, Boutell C, Katagiri T, Keep NH, et al. (2006) Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. Hum Mol Genet 15: 599–606. doi: 10.1093/hmg/ddi476
[32]  Carvalho MA, Marsillac SM, Karchin R, Manoukian S, Grist S, et al. (2007) Determination of cancer risk associated with germ line BRCA1 missense variants by functional analysis. Cancer Res 67: 1494–1501. doi: 10.1158/0008-5472.can-06-3297
[33]  Phelan CM, Dapic V, Tice B, Favis R, Kwan E, et al. (2005) Classification of BRCA1 missense variants of unknown clinical significance. J Med Genet 42: 138–146. doi: 10.1136/jmg.2004.024711
[34]  Vallon-Christersson J, Cayanan C, Haraldsson K, Loman N, Bergthorsson JT, et al. (2001) Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Hum Mol Genet 10: 353–360. doi: 10.1093/hmg/10.4.353
[35]  Rodriguez JA, Au WW, Henderson BR (2004) Cytoplasmic mislocalization of BRCA1 caused by cancer-associated mutations in the BRCT domain. Exp Cell Res 293: 14–21. doi: 10.1016/j.yexcr.2003.09.027
[36]  Chen CF, Li S, Chen Y, Chen PL, Sharp ZD, et al. (1996) The nuclear localization sequences of the BRCA1 protein interact with the importin-alpha subunit of the nuclear transport signal receptor. J Biol Chem 271: 32863–32868. doi: 10.1074/jbc.271.51.32863
[37]  Lee MS, Green R, Marsillac SM, Coquelle N, Williams RS, et al. (2010) Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. Cancer Res 70: 4880–4890. doi: 10.1158/0008-5472.can-09-4563
[38]  Williams RS, Lee MS, Hau DD, Glover JN (2004) Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol 11: 519–525. doi: 10.1038/nsmb776
[39]  Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A 98: 5134–5139. doi: 10.1073/pnas.081068398
[40]  Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, et al. (1999) Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 4: 1093–1099. doi: 10.1016/s1097-2765(00)80238-5
[41]  Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD (2010) Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. Cancer Res 70: 988–995. doi: 10.1158/0008-5472.can-09-2850
[42]  Chang S, Biswas K, Martin BK, Stauffer S, Sharan SK (2009) Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations. J Clin Invest 119: 3160–3171. doi: 10.1172/jci39836
[43]  Tomlinson GE, Chen TT, Stastny VA, Virmani AK, Spillman MA, et al. (1998) Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res 58: 3237–3242.
[44]  Vega A, Campos B, Bressac-De-Paillerets B, Bond PM, Janin N, et al. (2001) The R71G BRCA1 is a founder Spanish mutation and leads to aberrant splicing of the transcript. Hum Mutat 17: 520–521. doi: 10.1002/humu.1136
[45]  Kuznetsov SG, Liu P, Sharan SK (2008) Mouse embryonic stem cell-based functional assay to evaluate mutations in BRCA2. Nat Med 14: 875–881. doi: 10.1038/nm.1719
[46]  Hadjisavvas A, Loizidou MA, Middleton N, Michael T, Papachristoforou R, et al. (2010) An investigation of breast cancer risk factors in Cyprus: a case control study. BMC Cancer 10: 447. doi: 10.1186/1471-2407-10-447
[47]  Brzovic PS, Meza J, King MC, Klevit RE (1998) The cancer-predisposing mutation C61G disrupts homodimer formation in the NH2-terminal BRCA1 RING finger domain. J Biol Chem 273: 7795–7799. doi: 10.1074/jbc.273.14.7795
[48]  Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, et al. (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276: 14537–14540. doi: 10.1074/jbc.c000881200
[49]  Morris JR, Solomon E (2004) BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 13: 807–817. doi: 10.1093/hmg/ddh095
[50]  Lindor NM, Guidugli L, Wang X, Vallee MP, Monteiro AN, et al.. (2011) A review of a multifactorial probability-based model for classification of BRCA1 and BRCA2 variants of uncertain significance (VUS). Hum Mutat.
[51]  Meza JE, Brzovic PS, King MC, Klevit RE (1999) Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J Biol Chem 274: 5659–5665. doi: 10.1074/jbc.274.9.5659
[52]  Rodriguez JA, Henderson BR (2000) Identification of a functional nuclear export sequence in BRCA1. J Biol Chem 275: 38589–38596. doi: 10.1074/jbc.m003851200
[53]  Thompson ME, Robinson-Benion CL, Holt JT (2005) An amino-terminal motif functions as a second nuclear export sequence in BRCA1. J Biol Chem 280: 21854–21857. doi: 10.1074/jbc.m502676200
[54]  Fabbro M, Rodriguez JA, Baer R, Henderson BR (2002) BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export. J Biol Chem 277: 21315–21324. doi: 10.1074/jbc.m200769200
[55]  Mallery DL, Vandenberg CJ, Hiom K (2002) Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 21: 6755–6762. doi: 10.1093/emboj/cdf691
[56]  Xia Y, Pao GM, Chen HW, Verma IM, Hunter T (2003) Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem 278: 5255–5263. doi: 10.1074/jbc.m204591200
[57]  Morris JR, Boutell C, Keppler M, Densham R, Weekes D, et al. (2009) The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462: 886–890. doi: 10.1038/nature08593
[58]  Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, et al. (2011) BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 20: 797–809. doi: 10.1016/j.ccr.2011.11.014
[59]  Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D 3rd, et al. (2003) Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci U S A 100: 5646–5651. doi: 10.1073/pnas.0836054100
[60]  Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, et al. (2011) BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 334: 525–528. doi: 10.1126/science.1209909
[61]  Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: 3894–3900. doi: 10.1093/nar/gkf493
[62]  Spurdle AB, Whiley PJ, Thompson B, Feng B, Healey S, et al. (2012) BRCA1 R1699Q variant displaying ambiguous functional abrogation confers intermediate breast and ovarian cancer risk. J Med Genet 49: 525–532. doi: 10.1136/jmedgenet-2012-101037
[63]  Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE (2001) Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol 8: 833–837. doi: 10.1038/nsb1001-833

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133