It is generally accepted that CD8 T cells play the key role to maintain HSV-1 latency in trigeminal ganglia of ocularly infected mice. Yet, comparably little is known about the role of innate immunity in establishment of viral latency. In the current study, we investigated whether CD8α DCs impact HSV-1 latency by examining latency in the trigeminal ganglia (TG) of wild-type (WT) C57BL/6 versus CD8α?/? (lack functional CD8 T cells and CD8α+ DCs), CD8β?/? (have functional CD8α+ T cells and CD8α+ DCs), and β2m?/? (lack functional CD8 T cells but have CD8α+ DCs) mice as well as BXH2 (have functional CD8 T cells but lack CD8α+ DCs) versus WT C3H (have functional CD8α T cells and CD8α+ DCs) mice. We also determined whether the phenotype of CD8α?/? and BXH2 mice could be restored to that of WT mice by adoptive transfer of WT CD8+ T cells or bone marrow (BM) derived CD8α+ DCs. Our results clearly demonstrate that CD8α DCs, rather than CD8 T cells, are responsible for enhanced viral latency and recurrences.
Barron BA, Gee L, Hauck WW, Kurinij N, Dawson CR, et al. (1994) Herpetic Eye Disease Study. A controlled trial of oral acyclovir for herpes simplex stromal keratitis. Ophthalmology 101: 1871–1882. doi: 10.1016/s0161-6420(13)31155-5
[3]
Wilhelmus KR, Dawson CR, Barron BA, Bacchetti P, Gee L, et al. (1996) Risk factors for herpes simplex virus epithelial keratitis recurring during treatment of stromal keratitis or iridocyclitis. Herpetic Eye Disease Study Group. Br J Ophthalmol 80: 969–972. doi: 10.1136/bjo.80.11.969
[4]
Oh JO, Kimura SJ, Ostler HB, Dawson CR, Smolin G (1976) Oculogenital transmission of type 2 herpes simplex virus in adults. Surv Ophthalmol 21: 106–109. doi: 10.1016/0039-6257(76)90087-4
[5]
Pavan-Langston D (1983) Ocular viral infections. Med Clin North Am 67: 973–990.
[6]
Corey L (1994) The current trend in genital herpes. Progress in prevention. Sex Transm Dis 21: S38–S44.
[7]
Gordon YJ (1990) Pathogenesis and latency of herpes simplex virus type 1 (HSV-1): an ophthalmologist’s view of the eye as a model for the study of the virus- host relationship. Adv Exp Med Biol 278: 205–209. doi: 10.1007/978-1-4684-5853-4_21
[8]
Kaufman HE, Azcuy AM, Varnell ED, Sloop GD, Thompson HW, et al. (2005) HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci 46: 241–247.
[9]
Steiner I (1996) Human herpes viruses latent infection in the nervous system. Immunol Rev 152: 157–173. doi: 10.1111/j.1600-065x.1996.tb00915.x
[10]
Doymaz MZ, Rouse BT (1992) Herpetic stromal keratitis: an immunopathologic disease mediated by CD4+ T lymphocytes. Invest Ophthalmol Vis Sci 33: 2165–2173.
[11]
Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL (2000) CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191: 1459–1466. doi: 10.1084/jem.191.9.1459
[12]
Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL (2003) Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18: 593–603. doi: 10.1016/s1074-7613(03)00112-2
[13]
Allen SJ, Hamrah P, Gate DM, Mott KR, Mantopoulos D, et al. (2011) The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus type 1. J Virol 85: 4184–4197. doi: 10.1128/jvi.02290-10
[14]
Mott KR, Bresee CJ, Allen SJ, BenMohamed L, Wechsler SL, et al. (2009) Level of herpes simplex virus type 1 latency correlates with severity of corneal scarring and exhaustion of CD8+ T cells in trigeminal ganglia of latently infected mice. J Virol 83: 2246–2254. doi: 10.1128/jvi.02234-08
[15]
Mott KR, Ghiasi H (2008) Role of dendritic cells in enhancement of herpes simplex virus type 1 latency and reactivation in vaccinated mice. Clin Vaccine Immunol 15: 1859–1867. doi: 10.1128/cvi.00318-08
[16]
Tailor P, Tamura T, Morse HC 3rd, Ozato K (2008) The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111: 1942–1945. doi: 10.1182/blood-2007-07-100750
[17]
Fung-Leung WP, Schilham MW, Rahemtulla A, Kundig TM, Vollenweider M, et al. (1991) CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65: 443–449. doi: 10.1016/0092-8674(91)90462-8
[18]
Osorio Y, Ghiasi H (2003) Comparison of adjuvant efficacy of herpes simplex virus type 1 recombinant viruses expressing TH1 and TH2 cytokine genes. J Virol 77: 5774–5783. doi: 10.1128/jvi.77.10.5774-5783.2003
[19]
Perng GC, Dunkel EC, Geary PA, Slanina SM, Ghiasi H, et al. (1994) The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68: 8045–8055.
[20]
Crooks ME, Littman DR (1994) Disruption of T lymphocyte positive and negative selection in mice lacking the CD8 beta chain. Immunity 1: 277–285. doi: 10.1016/1074-7613(94)90079-5
[21]
Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, et al. (2002) The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195: 953–958. doi: 10.1084/jem.20020045
[22]
Balkhi MY, Latchumanan VK, Singh B, Sharma P, Natarajan K (2004) Cross-regulation of CD86 by CD80 differentially regulates T helper responses from Mycobacterium tuberculosis secretory antigen-activated dendritic cell subsets. J Leukoc Biol 75: 874–883. doi: 10.1189/jlb.1003476
[23]
Ahmed R, King CC, Oldstone MB (1987) Virus-lymphocyte interaction: T cells of the helper subset are infected with lymphocytic choriomeningitis virus during persistent infection in vivo. J Virol 61: 1571–1576.
[24]
Mott KR, Underhill D, Wechsler SL, Town T, Ghiasi H (2009) A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages. Virol J 6: 56. doi: 10.1186/1743-422x-6-56
[25]
Mott KR, Perng GC, Osorio Y, Kousoulas KG, Ghiasi H (2007) A Recombinant Herpes Simplex Virus Type 1 Expressing Two Additional Copies of gK Is More Pathogenic than Wild-Type Virus in Two Different Strains of Mice. J Virol 81: 12962–12972. doi: 10.1128/jvi.01442-07
[26]
Mott KR, Osorio Y, Brown DJ, Morishige N, Wahlert A, et al. (2007) The corneas of naive mice contain both CD4+ and CD8+ T cells. Mol Vis 13: 1802–1812.
[27]
Braaten DC, McClellan JS, Messaoudi I, Tibbetts SA, McClellan KB, et al. (2006) Effective control of chronic gamma-herpesvirus infection by unconventional MHC Class Ia-independent CD8 T cells. PLoS Pathog 2: e37. doi: 10.1371/journal.ppat.0020037
[28]
Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, et al. (1987) Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61: 3820–3826.
Zamoyska R (1994) The CD8 coreceptor revisited: one chain good, two chains better. Immunity 1: 243–246. doi: 10.1016/1074-7613(94)90075-2
[31]
Lombardi V, Speak AO, Kerzerho J, Szely N, Akbari O (2012) CD8alpha(+)beta(?) and CD8alpha(+)beta(+) plasmacytoid dendritic cells induce Foxp3(+) regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal Immunol 5: 432–443. doi: 10.1038/mi.2012.20
[32]
Devine L, Kieffer LJ, Aitken V, Kavathas PB (2000) Human CD8 beta, but not mouse CD8 beta, can be expressed in the absence of CD8 alpha as a beta beta homodimer. J Immunol 164: 833–838. doi: 10.4049/jimmunol.164.2.833
[33]
Gorman SD, Sun YH, Zamoyska R, Parnes JR (1988) Molecular linkage of the Ly-3 and Ly-2 genes. Requirement of Ly-2 for Ly-3 surface expression. J Immunol 140: 3646–3653.
[34]
Aliberti J, Schulz O, Pennington DJ, Tsujimura H, Reis e Sousa C, et al. (2003) Essential role for ICSBP in the in vivo development of murine CD8alpha+dendritic cells. Blood 101: 305–310. doi: 10.1182/blood-2002-04-1088
[35]
Turcotte K, Gauthier S, Mitsos LM, Shustik C, Copeland NG, et al. (2004) Genetic control of myeloproliferation in BXH-2 mice. Blood 103: 2343–2350. doi: 10.1182/blood-2003-06-1852
[36]
Stevens JG (1989) Human herpesviruses: a consideration of the latent state. Microbiol Rev 53: 318–332.
[37]
Wechsler SL, Nesburn AB, Watson R, Slanina S, Ghiasi H (1988) Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans. J Gen Virol 69: 3101–3106. doi: 10.1099/0022-1317-69-12-3101
[38]
Fraser NW, Valyi-Nagy T (1993) Viral, neuronal and immune factors which may influence herpes simplex virus (HSV) latency and reactivation. Microb Pathog 15: 83–91. doi: 10.1006/mpat.1993.1059
[39]
Mott KR, UnderHill D, Wechsler SL, Ghiasi H (2008) Lymphoid-related CD11c+CD8a+ dendritic cells are involved in enhancing HSV-1 latency. J Virol 82: 9870–9879. doi: 10.1128/jvi.00566-08
[40]
Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7: 19–30. doi: 10.1038/nri1996
[41]
Belz GT, Nutt SL (2012) Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12: 101–113. doi: 10.1038/nri3149
[42]
den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(?) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192: 1685–1696. doi: 10.1084/jem.192.12.1685
[43]
Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, et al. (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315: 107–111. doi: 10.1126/science.1136080
[44]
Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G, et al. (2004) Cutting edge: conventional CD8alpha(+) dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol 172: 1996–2000. doi: 10.4049/jimmunol.172.4.1996
[45]
Belz GT, Behrens GM, Smith CM, Miller JF, Jones C, et al. (2002) The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196: 1099–1104. doi: 10.1084/jem.20020861
[46]
Iyoda T, Shimoyama S, Liu K, Omatsu Y, Akiyama Y, et al. (2002) The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 195: 1289–1302. doi: 10.1084/jem.20020161
[47]
Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, et al. (2007) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207: 1247–1260. doi: 10.1084/jem.20092140
[48]
Allenspach EJ, Lemos MP, Porrett PM, Turka LA, Laufer TM (2008) Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29: 795–806. doi: 10.1016/j.immuni.2008.08.013
[49]
Maldonado-Lopez R, Moser M (2001) Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13: 275–282. doi: 10.1006/smim.2001.0323
[50]
den Haan JM, Bevan MJ (2002) Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(?) dendritic cells in vivo. J Exp Med 196: 817–827. doi: 10.1084/jem.20020295
[51]
Kawamura K, Kadowaki N, Kitawaki T, Uchiyama T (2006) Virus-stimulated plasmacytoid dendritic cells induce CD4+ cytotoxic regulatory T cells. Blood 107: 1031–1038. doi: 10.1182/blood-2005-04-1737
[52]
Brown DM, Lee S, Garcia-Hernandez Mde L, Swain SL (2012) Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 86: 6792–6803. doi: 10.1128/jvi.07172-11
[53]
Zhou Y, Callendret B, Xu D, Brasky KM, Feng Z, et al. (2012) Dominance of the CD4(+) T helper cell response during acute resolving hepatitis A virus infection. J Exp Med 209: 1481–1492. doi: 10.1084/jem.20111906
[54]
Lee HK, Zamora M, Linehan MM, Iijima N, Gonzalez D, et al. (2009) Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. J Exp Med 206: 359–370. doi: 10.1084/jem.20080601
[55]
Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, et al. (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322: 1097–1100. doi: 10.1126/science.1164206
[56]
Schnorrer P, Behrens GM, Wilson NS, Pooley JL, Smith CM, et al. (2006) The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc Natl Acad Sci U S A 103: 10729–10734. doi: 10.1073/pnas.0601956103
[57]
Alaniz RC, Sandall S, Thomas EK, Wilson CB (2004) Increased dendritic cell numbers impair protective immunity to intracellular bacteria despite augmenting antigen-specific CD8(+) T lymphocyte responses. J Immunol 172: 3725–3735. doi: 10.4049/jimmunol.172.6.3725
[58]
Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE, et al. (2011) CD8alpha(+) dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35: 236–248. doi: 10.1016/j.immuni.2011.06.012
[59]
Engelmayer J, Larsson M, Subklewe M, Chahroudi A, Cox WI, et al. (1999) Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163: 6762–6768.
[60]
Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM (1998) Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 72: 2733–2737.
[61]
Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, et al. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100: 587–597. doi: 10.1016/s0092-8674(00)80694-7
[62]
Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, et al. (2000) Human skin Langerhans cells are targets of dengue virus infection. Nature Medicine 6: 816–820.
[63]
Paroli M, Schiaffella E, Di Rosa F, Barnaba V (2000) Persisting viruses and autoimmunity. J Neuroimmunol 107: 201–204. doi: 10.1016/s0165-5728(00)00228-9
[64]
Ganguly D, Haak S, Sisirak V, Reizis B (2013) The role of dendritic cells in autoimmunity. Nat Rev Immunol 13: 566–577. doi: 10.1038/nri3477
[65]
Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, et al. (2011) Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med 208: 885–891. doi: 10.1084/jem.20102318
[66]
Frank GM, Buela KA, Maker DM, Harvey SA, Hendricks RL (2012) Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea. J Immunol 188: 1350–1359. doi: 10.4049/jimmunol.1101968
[67]
Kobelt D, Lechmann M, Steinkasserer A (2003) The interaction between dendritic cells and herpes simplex virus-1. Curr Top Microbiol Immunol 276: 145–161. doi: 10.1007/978-3-662-06508-2_7
[68]
Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29: 3245–3253. doi: 10.1002/(sici)1521-4141(199910)29:10<3245::aid-immu3245>3.0.co;2-x
[69]
Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, et al. (2000) Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74: 7127–7136. doi: 10.1128/jvi.74.15.7127-7136.2000
[70]
Stefanidou M, Ramos I, Mas Casullo V, Trepanier JB, Rosenbaum S, et al. (2013) HSV-2 Prevents Dendritic Cell Maturation, Induces Apoptosis and Triggers Release of Pro-inflammatory Cytokines: Potential Links to HSV-HIV Synergy. J Virol 87: 1443–1453. doi: 10.1128/jvi.01302-12
[71]
Liu T, Khanna KM, Carriere BN, Hendricks RL (2001) Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J Virol 75: 11178–11184. doi: 10.1128/jvi.75.22.11178-11184.2001