[1] | Yanagimachi R, Chang MC (1961) Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J Exp Zool 148: 185–203. doi: 10.1002/jez.1401480303
|
[2] | Whittingham DG, Siracusa G (1978) The involvement of calcium in the activation of mammalian oocytes. Exp Cell Res 113: 311–317. doi: 10.1016/0014-4827(78)90371-3
|
[3] | Longo FJ (1980) Aging of mouse eggs in vivo and in vitro. Gamete Res 3: 379–393. doi: 10.1002/mrd.1120030409
|
[4] | Webb M, Howlett SK, Maro B (1986) Parthenogenesis and cytoskeletal organization in aging mouse eggs. J Embryol Exp Morphol 95: 131–145.
|
[5] | Tarin JJ, Ten J, Vendrell FJ, Cano A (1998) Dithiothreitol prevents age associated decrease in oocyte/conceptus viability in vitro. Hum Reprod 13: 381–386. doi: 10.1093/humrep/13.2.381
|
[6] | Miao YL, Liu XY, Qiao TW, Miao DQ, Luo MJ, et al. (2005) Cumulus cells accelerate aging of mouse oocytes. Biol Reprod 73: 1025–1031. doi: 10.1095/biolreprod.105.043703
|
[7] | Juetten J, Bavister BD (1983) Effects of egg aging on in vitro fertilization and first cleavage division in the hamster. Gamete Res 8: 219–230. doi: 10.1002/mrd.1120080303
|
[8] | Tesarik J (1993) Subzonal sperm insertion with aged human oocytes from failed in vitro fertilization attempts: fertilization results and some applications. Hum Reprod 8: 1245–1250.
|
[9] | Winston NJ, Braude PR, Johnson MH (1993) Are failed-fertilized human oocytes useful? Hum Reprod 8: 503–507.
|
[10] | Tarin JJ, Perez-Albala S, Aguilar A, Minarro J, Hermenegildo C, et al. (1999) Long-term effects of postovulatory aging of mouse oocytes on offspring: a two-generational study. Biol Reprod 61: 1347–1355. doi: 10.1095/biolreprod61.5.1347
|
[11] | Tarin JJ, Perez-Albala S, Perez-Hoyos S, Cano A (2002) Postovulatory aging of oocytes decreases reproductive fitness and longevity of offspring. Biol Reprod 66: 495–499. doi: 10.1095/biolreprod66.2.495
|
[12] | Lacham-Kaplan O, Trounson A (2008) Reduced developmental competence of immature, in-vitro matured and postovulatory aged mouse oocytes following IVF and ICSI. Reprod Biol Endocrinol 6: 58. doi: 10.1186/1477-7827-6-58
|
[13] | Cervera RP, García-Ximénez F (2003) Oocyte age and nuclear donor cell type affect the technical efficiency of somatic cloning in rabbits. Zygote 11: 151–158. doi: 10.1017/s0967199403002181
|
[14] | Iwamoto M, Onishi A, Fuchimoto D, Somfai T, Suzuki S, et al. (2005) Effects of caffeine treatment on aged porcine oocytes: parthenogenetic activation ability, chromosome condensation and development to the blastocyst stage after somatic cell nuclear transfer. Zygote 13: 335–345. doi: 10.1017/s0967199405003370
|
[15] | Wu YG, Zhou P, Lan GC, Wang G, Luo MJ, et al. (2007) The effects of delayed activation and MG132 treatment on nuclear remodeling and preimplantation development of embryos cloned by electrofusion are correlated with the age of recipient cytoplasts. Cloning Stem Cells 9: 417–431. doi: 10.1089/clo.2006.0023
|
[16] | Hayes E, Galea S, Verkuylen A, Pera M, Morrison J, et al. (2001) Nuclear transfer of adult and genetically modified fetal cells of the rat. Physiol Genomics 5: 193–204.
|
[17] | Hirabayashi M, Kato M, Ishikawa A, Hochi S (2003) Factors influencing chromosome condensation and development of cloned rat embryos. Cloning Stem Cells 5: 35–42. doi: 10.1089/153623003321512148
|
[18] | Iannaccone P, Taborn G, Garton R (2001) Preimplantation and postimplantation development of rat embryos cloned with cumulus cells and fibroblasts. Zygote 9: 135–143. doi: 10.1017/s0967199401001149
|
[19] | Tomioka I, Mizutani E, Yoshida T, Sugawara A, Inai K, et al. (2007) Spindle formation and microtubule organization during first division in reconstructed rat embryos produced by somatic cell nuclear transfer. J Reprod Dev 53: 835–842. doi: 10.1262/jrd.18144
|
[20] | Sterthaus O, Skoczylas E, De Geyter C, Bürki K, Ledermann B (2009) Evaluation of in vitro cultured rat oocytes, from different strains, by spindle morphology and maturation-promoting-factor activity combined with nuclear-transfer experiments. Cloning Stem Cells 11: 463–472. doi: 10.1089/clo.2009.0014
|
[21] | Keefer CL, Schuetz AW (1982) Spontaneous activation of ovulated rat oocytes during in vitro culture. J Exp Zool 224: 371–377. doi: 10.1002/jez.1402240310
|
[22] | Chebotareva T, Taylor J, Mullins JJ, Wilmut I (2011) Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Mol Reprod Dev 78: 795–807. doi: 10.1002/mrd.21385
|
[23] | Ito J, Hirabayashi M, Kato M, Takeuchi A, Ito M (2005) Shimada M, Hochi S. Contribution of high p34cdc2 kinase activity to premature chromosome condensation of injected somatic cell nuclei in rat oocytes. Reproduction 129: 171–180. doi: 10.1530/rep.1.00431
|
[24] | Malcuit C, Kurokawa M, Fissore RA (2006) Calcium oscillations and mammalian egg activation. J Cell Physiol 206: 565–573. doi: 10.1002/jcp.20471
|
[25] | Ajduk A, Ma?agocki A, Maleszewski M (2008) Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reprod Biol 8: 3–22. doi: 10.1016/s1642-431x(12)60001-1
|
[26] | Colonna R, Tatone C, Malgaroli A, Eusebi F, Mangia F (1989) Effects of protein kinase C stimulation and free Ca2+ rise in mammalian egg activation. Gamete Res 24: 171–183. doi: 10.1002/mrd.1120240205
|
[27] | Kline D, Kline JT (1992) Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol 149: 80–89. doi: 10.1016/0012-1606(92)90265-i
|
[28] | Bos-Mikich A, Swann K, Whittingham DG (1995) Calcium oscillations and protein synthesis inhibition synergistically activate mouse oocytes. Mol Reprod Dev 41: 84–90. doi: 10.1002/mrd.1080410113
|
[29] | Jellerette T, He CL, Wu H, Parys JB, Fissore RA (2000) Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev Biol 223: 238–250. doi: 10.1006/dbio.2000.9675
|
[30] | Grupen CG, Nottle MB, Nagashima H (2002) Calcium release at fertilization: Artificially mimicking the oocyte's response to sperm. J Reprod Dev 48: 313–333. doi: 10.1262/jrd.48.313
|
[31] | Cui W, Zhang J, Lian HY, Wang HL, Miao DQ, et al. (2012) Roles of MAPK and Spindle Assembly Checkpoint in Spontaneous Activation and MIII Arrest of Rat Oocytes. PLoS One 7: e32044. doi: 10.1371/journal.pone.0032044
|
[32] | DiPolo R, Beaugé L (1979) Physiological role of ATP-driven calcium pump in squid axon. Nature 278(5701): 271–273. doi: 10.1038/278271a0
|
[33] | DiPolo R (1989) The Na+–Ca2+ exchange in intact cells. In Sodium–Calcium exchange. Eds. TJA Allen, D Noble and H Reuter. Oxford University Press, Oxford. pp –526.
|
[34] | Pepperell JR, Kommineni K, Buradagunta S, Smith PJ, Keefe DL (1999) Transmembrane regulation of intracellular calcium by a plasma membrane sodium/calcium exchanger in mouse ova. Biol Reprod 60: 1137–1143. doi: 10.1095/biolreprod60.5.1137
|
[35] | Carroll J (2000) Na+-Ca2+ exchange in mouse oocytes: modifications in the regulation of intracellular free Ca2+ during oocyte maturation. J Reprod Fertil 118: 337–342. doi: 10.1530/reprod/118.2.337
|
[36] | Macháty Z, Ramsoondar JJ, Bonk AJ, Prather RS, Bondioli KR (2002) Na(+)/Ca(2+) exchanger in porcine oocytes. Biol Reprod 67: 1133–1139. doi: 10.1095/biolreprod67.4.1133
|
[37] | Cui W, Zhang J, Zhang CX, Jiao GZ, Zhang M, et al. (2013) Control of spontaneous activation of rat oocytes by regulating plasma membrane Na+/Ca2+ exchanger activities. Biol Reprod 88: 160. doi: 10.1095/biolreprod.113.108266
|
[38] | Boerjan ML, de Boer P (1990) First cell cycle of zygotes of the mouse derived from oocytes aged postovulation in vivo and fertilized in vivo. Mol Reprod Dev 25: 155–163. doi: 10.1002/mrd.1080250208
|
[39] | Liu N, Wu YG, Lan GC, Sui HS, Ge L, et al. (2009) Pyruvate prevents aging of mouse oocytes. Reproduction 138: 223–234. doi: 10.1530/rep-09-0122
|
[40] | Lord T, Aitken RJ (2013) Oxidative stress and aging of the post-ovulatory oocyte. Reproduction 146: R217–227. doi: 10.1530/rep-13-0111
|
[41] | Takahashi T, Takahashi E, Igarashi H, Tezuka N, Kurachi H (2003) Impact of oxidative stress in aged mouse oocytes on calcium oscillations at fertilization. Mol Reprod Dev 66: 143–152. doi: 10.1002/mrd.10341
|
[42] | Squier TC, Bigelow DJ (2000) Protein oxidation and age-dependent alterations in calcium homeostasis. Front Biosci 5: D504–D526. doi: 10.2741/squier
|
[43] | Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38: 713–721. doi: 10.1016/s0161-5890(01)00108-0
|
[44] | Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol 195: 451–470.
|
[45] | Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axons. J Physiol 200: 431–458.
|
[46] | Eisner DA, Lederer WJ (1985) Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol 248(3, pt 1): C189–C202.
|
[47] | Crespo LM, Grantham CJ, Cannell MB (1990) Kinetics, stoichiometry and role of the Na-Ca exchange mechanism in isolated cardiac myocytes. Nature 345(6276): 618–621. doi: 10.1038/345618a0
|
[48] | Igusa Y, Miyazaki S (1983) Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J Physiol 340: 611–632.
|
[49] | Georgiou P, House CR, McNiven AI, Yoshida S (1988) On the mechanism of a pH-induced rise in membrane potassium conductance in hamster eggs. J Physiol 402: 121–138.
|
[50] | Shiraga M, Tomiyama Y, Honda S, Suzuki H, Kosugi S, et al. (1998) Involvement of Na+/Ca2+ exchanger in inside-out signaling through the platelet integrin IIbbeta3. Blood 92: 3710–3720.
|
[51] | Vines CA, Yoshida K, Griffin FJ, Pillai MC, Morisawa M, et al. (2002) Motility initiation in herring sperm is regulated by reverse sodium-calcium exchange. Proc Natl Acad Sci U S A 99: 2026–2031. doi: 10.1073/pnas.042700899
|
[52] | Egger M, Niggli E (1999) Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol 168: 107–130. doi: 10.1007/s002329900502
|
[53] | Despa S, Bers DM (2007) Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes. Am J Physiol Cell Physiol 293: C321–C327. doi: 10.1152/ajpcell.00597.2006
|
[54] | Swift F, Birkeland JA, Tovsrud N, Enger UH, Aronsen JM, et al. (2008) Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase alpha2-isoform in heart failure. Cardiovasc Res 78: 71–78. doi: 10.1093/cvr/cvn013
|
[55] | Swift F, Tovsrud N, Sjaastad I, Sejersted OM, Niggli E, et al. (2010) Functional coupling of alpha(2)-isoform Na(+)/K(+)-ATPase and Ca(2+) extrusion through the Na(+)/Ca(2+)-exchanger in cardiomyocytes. Cell Calcium 48: 54–60. doi: 10.1016/j.ceca.2010.06.006
|
[56] | Salido GM, Sage SO, Rosado JA (2009) Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 21: 457–461. doi: 10.1016/j.cellsig.2008.11.005
|
[57] | Galan C, Jardín I, Dionisio N, Salido G, Rosado JA (2010) Role of oxidant scavengers in the prevention of Ca2+ homeostasis disorders. Molecules 15: 7167–7187. doi: 10.3390/molecules15107167
|
[58] | DiPolo R, Beaugé L (2011) In dialyzed squid axons oxidative stress inhibits the Na+/Ca2+ exchanger by impairing the Cai2+-regulatory site. Am J Physiol Cell Physiol 301: C687–694. doi: 10.1152/ajpcell.00521.2010
|
[59] | Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38: 713–721. doi: 10.1016/s0161-5890(01)00108-0
|
[60] | Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I (1989) An improved culture medium supports development of random-breed 1-cell mouse embryos in vitro. J Reprod Fertil 86: 679–688. doi: 10.1530/jrf.0.0860679
|
[61] | Oh SH, Miyoshi K, Funahashi H (1998) Rat oocytes fertilized in modified rat 1-cell embryo culture medium containing a high sodium chloride concentration and bovine serum albumin maintain developmental ability to the blastocyst stage. Biol Reprod 59: 884–889. doi: 10.1095/biolreprod59.4.884
|
[62] | Nasr-Esfahani MH, Aitken JR, Johnson MH (1990) Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109: 501–507.
|