Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7) (Ang-(1-7)), a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7) production, in wild type (wt) and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA) muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7), which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.
References
[1]
Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, et al. (2006) Increase in decorin and biglycan in Duchenne Muscular Dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. J Cell Mol Med 10: 758–769. doi: 10.1111/j.1582-4934.2006.tb00435.x
[2]
Porter JD, Merriam AP, Leahy P, Gong B, Feuerman J, et al. (2004) Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy. Hum Mol Genet 13: 257–269. doi: 10.1093/hmg/ddh033
[3]
Alvarez K, Fadic R, Brandan E (2002) Augmented synthesis and differential localization of heparan sulfate proteoglycans in Duchenne muscular dystrophy. J Cell Biochem 85: 703–713. doi: 10.1002/jcb.10184
[4]
Desguerre I, Christov C, Mayer M, Zeller R, Becane HM, et al. (2009) Clinical heterogeneity of duchenne muscular dystrophy (DMD): definition of sub-phenotypes and predictive criteria by long-term follow-up. PLoS One 4: e4347. doi: 10.1371/journal.pone.0004347
[5]
Serrano AL, Munoz-Canoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316: 3050–3058. doi: 10.1016/j.yexcr.2010.05.035
[6]
Zhou L, Lu H (2010) Targeting fibrosis in Duchenne muscular dystrophy. J Neuropathol Exp Neurol 69: 771–776. doi: 10.1097/nen.0b013e3181e9a34b
[7]
Varga G, Brenne DV, Pham SH (2005) Fibrosis Research: Methods in Molecular Medicine. Humana Pres Inc 117.
[8]
Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214: 199–210. doi: 10.1002/path.2277
[9]
Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117: 524–529. doi: 10.1172/jci31487
[10]
Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, et al. (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1: 21. doi: 10.1186/2044-5040-1-21
Brandan E, Gutierrez J (2013) Role of proteoglycans in the regulation of skeletal muscle fibrotic response. FEBS J. doi: 10.1111/febs.12278
[13]
Acuna MJ, Pessina P, Olguin H, Cabrera D, Vio CP, et al. (2013) Restoration of muscle strength in dystrophic muscle by angiotensin-1–7 through inhibition of TGF-beta signalling. Hum Mol Genet. doi: 10.1093/hmg/ddt514
[14]
Paulis L, Steckelings UM, Unger T (2012) Key advances in antihypertensive treatment. Nat Rev Cardiol 9: 276–285. doi: 10.1038/nrcardio.2012.33
[15]
Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, et al. (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342: 145–153. doi: 10.1056/nejm200001203420301
[16]
Dias-Peixoto MF, Santos RA, Gomes ER, Alves MN, Almeida PW, et al. (2008) Molecular mechanisms involved in the angiotensin-(1–7)/Mas signaling pathway in cardiomyocytes. Hypertension 52: 542–548. doi: 10.1161/hypertensionaha.108.114280
[17]
Bader M, Santos RA, Unger T, Steckelings UM (2012) New therapeutic pathways in the RAS. J Renin Angiotensin Aldosterone Syst 13: 505–508. doi: 10.1177/1470320312466519
Fraga-Silva RA, Da Silva DG, Montecucco F, Mach F, Stergiopulos N, et al. (2012) The angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas receptor axis: a potential target for treating thrombotic diseases. Thromb Haemost 108: 1089–1096. doi: 10.1160/th12-06-0396
[21]
Ferrario CM, Trask AJ, Jessup JA (2005) Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 289: H2281–2290. doi: 10.1152/ajpheart.00618.2005
[22]
Marangoni RA, Carmona AK, Passaglia RC, Nigro D, Fortes ZB, et al. (2006) Role of the kallikrein-kinin system in Ang-(1–7)-induced vasodilation in mesenteric arterioles of Wistar rats studied in vivo-in situ. Peptides 27: 1770–1775. doi: 10.1016/j.peptides.2006.02.002
[23]
Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, et al. (2005) Angiotensin-(1–7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 289: H2356–2363. doi: 10.1152/ajpheart.00317.2005
[24]
Tallant EA, Ferrario CM, Gallagher PE (2005) Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 289: H1560–1566. doi: 10.1152/ajpheart.00941.2004
[25]
Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, et al. (2007) Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol 292: H736–742. doi: 10.1152/ajpheart.00937.2006
[26]
Benter IF, Ferrario CM, Morris M, Diz DI (1995) Antihypertensive actions of angiotensin-(1–7) in spontaneously hypertensive rats. Am J Physiol 269: H313–319.
[27]
Ferreira AJ, Santos RA, Almeida AP (2001) Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38: 665–668. doi: 10.1161/01.hyp.38.3.665
[28]
Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, et al. (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 100: 8258–8263. doi: 10.1073/pnas.1432869100
[29]
Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, et al. (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87: E1–9. doi: 10.1161/01.res.87.5.e1
[30]
Vickers C, Hales P, Kaushik V, Dick L, Gavin J, et al. (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277: 14838–14843. doi: 10.1074/jbc.m200581200
[31]
Simoes ESAC, Silveira KD, Ferreira AJ, Teixeira MM (2013) Angiotensin converting enzyme 2, Angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. doi: 10.1111/bph.12159
[32]
Ferrario CM (2011) ACE2: more of Ang-(1–7) or less Ang II? Curr Opin Nephrol Hypertens 20: 1–6. doi: 10.1097/mnh.0b013e3283406f57
[33]
Grobe JL, Der Sarkissian S, Stewart JM, Meszaros JG, Raizada MK, et al. (2007) ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clin Sci (Lond) 113: 357–364. doi: 10.1042/cs20070160
[34]
Mercure C, Yogi A, Callera GE, Aranha AB, Bader M, et al. (2008) Angiotensin(1–7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res 103: 1319–1326. doi: 10.1161/circresaha.108.184911
[35]
Caceres S, Cuellar C, Casar JC, Garrido J, Schaefer L, et al. (2000) Synthesis of proteoglycans is augmented in dystrophic mdx mouse skeletal muscle. Eur J Cell Biol 79: 173–181. doi: 10.1078/s0171-9335(04)70020-5
[36]
Cabello-Verrugio C, Morales G, Cabrera D, Vio CP, Brandan E (2011) Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles. J Cell Mol Med. doi: 10.1111/j.1582-4934.2011.01354.x
[37]
Morales G, Cabello-Verrugio C, Cabrera D, Goldschmeding R, Brandan E (2011) CTGF/CCN-2 overexpression can directly induce features of skeletal muscle dystrophy. J Pathol 225 490–501. doi: 10.1002/path.2952
[38]
Murca TM, Moraes PL, Capuruco CA, Santos SH, Melo MB, et al. (2012) Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. Regul Pept 177: 107–115. doi: 10.1016/j.regpep.2012.05.093
[39]
Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutiérrez J, et al. (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skeletal Muscle In Press.
[40]
Casar JC, Cabello-Verrugio C, Olguin H, Aldunate R, Inestrosa NC, et al. (2004) Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J Cell Sci 117: 73–84. doi: 10.1242/jcs.00828
[41]
Brandan E, Fuentes ME, Andrade W (1992) Decorin, a chondroitin/dermatan sulfate proteoglycan is under neural control in rat skeletal muscle. J Neurosci Res 32: 51–59. doi: 10.1002/jnr.490320107
[42]
Jin HY, Song B, Oudit GY, Davidge ST, Yu HM, et al. (2012) ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production. PLoS One 7: e38502. doi: 10.1371/journal.pone.0038502
[43]
Burks TN, Andres-Mateos E, Marx R, Mejias R, Van Erp C, et al. (2011) Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med 3: 82ra37. doi: 10.1126/scitranslmed.3002227
[44]
MacDonald EM, Cohn RD (2012) TGFbeta signaling: its role in fibrosis formation and myopathies. Curr Opin Rheumatol 24: 628–634. doi: 10.1097/bor.0b013e328358df34
[45]
Bedair HS, Karthikeyan T, Quintero A, Li Y, Huard J (2008) Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med 36: 1548–1554. doi: 10.1177/0363546508315470
[46]
Fernandes T, Hashimoto NY, Oliveira EM (2010) Characterization of angiotensin-converting enzymes 1 and 2 in the soleus and plantaris muscles of rats. Braz J Med Biol Res 43: 837–842. doi: 10.1590/s0100-879x2010007500088
[47]
Echeverria-Rodriguez O, Del Valle-Mondragon L, Hong E (2013) Angiotensin 1–7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo. Peptides 51C: 26–30. doi: 10.1016/j.peptides.2013.10.022
[48]
Fadic R (2005) Cell surface and gene expression regulation molecules in dystrophinopathy: mdx vs. Duchenne. Biol Res 38: 375–380. doi: 10.4067/s0716-97602005000400010
[49]
Watchko JF, O’Day TL, Hoffman EP (2002) Functional characteristics of dystrophic skeletal muscle: insights from animal models. J Appl Physiol 93: 407–417.
[50]
De la Porte S, Morin S, Koenig J (1999) Characteristics of skeletal muscle in mdx mutant mice. Int Rev Cytol 191: 99–148. doi: 10.1016/s0074-7696(08)60158-8
[51]
Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, et al. (2013) Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19: 1617–1624. doi: 10.1038/nm.3282
[52]
Epelman S, Tang WH, Chen SY, Van Lente F, Francis GS, et al. (2008) Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol 52: 750–754. doi: 10.1016/j.jacc.2008.02.088
[53]
Epelman S, Shrestha K, Troughton RW, Francis GS, Sen S, et al. (2009) Soluble angiotensin-converting enzyme 2 in human heart failure: relation with myocardial function and clinical outcomes. J Card Fail 15: 565–571. doi: 10.1016/j.cardfail.2009.01.014
[54]
Xia H, Sriramula S, Chhabra KH, Lazartigues E (2013) Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ Res 113: 1087–1096. doi: 10.1161/circresaha.113.301811
[55]
Jorgensen LH, Jensen CH, Wewer UM, Schroder HD (2007) Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice. Am J Pathol 171: 1599–1607. doi: 10.2353/ajpath.2007.070435
[56]
Guo LT, Shelton GD, Wewer UM, Engvall E (2005) ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy. Neuromuscul Disord 15: 786–789. doi: 10.1016/j.nmd.2005.06.019