全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Transcription Factor Nrf1 Is Topologically Repartitioned across Membranes to Enable Target Gene Transactivation through Its Acidic Glucose-Responsive Domains

DOI: 10.1371/journal.pone.0093458

Full-Text   Cite this paper   Add to My Lib

Abstract:

The membrane-bound Nrf1 transcription factor regulates critical homeostatic and developmental genes. The conserved N-terminal homology box 1 (NHB1) sequence in Nrf1 targets the cap‘n’collar (CNC) basic basic-region leucine zipper (bZIP) factor to the endoplasmic reticulum (ER), but it is unknown how its activity is controlled topologically within membranes. Herein, we report a hitherto unknown mechanism by which the transactivation activity of Nrf1 is controlled through its membrane-topology. Thus after Nrf1 is anchored within ER membranes, its acidic transactivation domains (TADs), including the Asn/Ser/Thr-rich (NST) glycodomain situated between acidic domain 1 (AD1) and AD2, are transiently translocated into the lumen of the ER, where NST is glycosylated in the presence of glucose to yield an inactive 120-kDa Nrf1 glycoprotein. Subsequently, portions of the TADs partially repartition across membranes into the cyto/nucleoplasmic compartments, whereupon an active 95-kDa form of Nrf1 accumulates, a process that is more obvious in glucose-deprived cells and may involve deglycosylation. The repartitioning of Nrf1 out of membranes is monitored within this protein by its acidic-hydrophobic amphipathic glucose-responsive domains, particularly the Neh5L subdomain within AD1. Therefore, the membrane-topological organization of Nrf1 dictates its post-translational modifications (i.e. glycosylation, the putative deglycosylation and selective proteolysis), which together control its ability to transactivate target genes.

References

[1]  von Heijne G (2006) Membrane-protein topology. Nat. Rev. Mol. Cell Biol 7: : 909–918. PMID:17139331
[2]  Ye J, Rawson RB, Komuro R, Chen X, Dave UP, et al.. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6: : 1355–1364. PMID:11163209
[3]  Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. . Cell 100: : 391–398. PMID:10693756
[4]  Wolfe MS, Kopan R (2004) Intramembrane proteolysis: theme and variations. Science 305: : 1119–1123. PMID:15326347
[5]  Zhang Y, Kobayashi A, Yamamoto M, Hayes JD (2009) The Nrf3 transcription factor is a membrane-bound glycoprotein targeted to the endoplasmic reticulum through its N-terminal homology box 1 sequence. J. Biol. Chem. 284: : 3195–3210. PMID:19047052
[6]  Zhang Y, Lucocq JM, Hayes JD (2009) The Nrf1 CNC/bZIP protein is a nuclear envelope-bound transcription factor that is activated by t-butyl hydroquinone but not by endoplasmic reticulum stressors. Biochem. J. 418: : 293–310. PMID:18990090
[7]  Zhang Y, Lucocq JM, Yamamoto M, Hayes JD (2007) The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Biochem. J. 408: : 161–172. PMID:17705787
[8]  Sykiotis GP, Bohmann D (2010) Stress-activated cap‘n’collar transcription factors in aging and human disease. Sci. Signal. 3: : re3. PMID:20215646
[9]  Steffen J, Seeger M, Koch A, Kruger E (2010) Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 40: : 147–158.PMID:20932482
[10]  Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, et al.. (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38: : 17–28. PMID:20385086
[11]  Grimberg KB, Beskow A, Lundin D, Davis MM, Young P (2011) Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome. Mol. Cell Biol. 31: : 897–909. PMID:21149573
[12]  Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, et al.. (2011) Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet. 7: : e1002119. PMID:21695230
[13]  Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266: : 11632–11639. PMID:1646813
[14]  Bean TL, Ney PA (1997) Multiple regions of p45 NF-E2 are required for b-globin gene expression in erythroid cells. Nucleic Acids Res. 25: : 2509–2515. PMID:9171106
[15]  Johnsen O, Murphy P, Prydz H, Kolsto AB (1998) Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription. Nucleic Acids Res. 26: : 512–520. PMID:9421508
[16]  Farmer SC, Sun CW, Winnier GE, Hogan BL, Townes TM (1997) The bZIP transcription factor LCR-F1 is essential for mesoderm formation in mouse development. Genes Dev. 11: : 786–798. PMID:9087432
[17]  Chan JY, Kwong M, Lu R, Chang J, Wang B, et al.. (1998) Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J. 17: : 1779–1787. PMID:9501099
[18]  Chen L, Kwong M, Lu R, Ginzinger D, Lee C, et al.. (2003) Nrf1 is critical for redox balance and survival of liver cells during development. Mol. Cell Biol. 23: : 4673–4686. PMID:12808106
[19]  Xu Z, Chen L, Leung L, Yen TS, Lee C, et al.. (2005) Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc. Natl. Acad. Sci. USA 102: : 4120–4125. PMID:15738389
[20]  Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, Hayes JD, et al.. (2008) Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J. Biol. Chem. 283: : 33554–33562. PMID:18826952
[21]  Kobayashi A, Tsukide T, Miyasaka T, Morita T, Mizoroki T, et al.. (2011) Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes Cells 16: : 692–703. PMID:21554501
[22]  Lee CS, Lee C, Hu T, Nguyen JM, Zhang J, et al.. (2011) Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proc. Natl. Acad. Sci. USA 108: : 8408–8413. PMID:21536885
[23]  Kim J, Xing W, Wergedal J, Chan JY, Mohan S (2010) Targeted disruption of nuclear factor erythroid-derived 2-like 1 in osteoblasts reduces bone size and bone formation in mice. Physiol. Genomics 40: : 100–110. PMID:19887580
[24]  Higgins LG, Kelleher MO, Eggleston IM, Itoh K, Yamamoto M, et al.. (2009) Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicol. Appl. Pharmacol. 237: : 267–280. PMID:19303893
[25]  Xiao H, Lü F, Stewart D, Zhang Y (2013) Mechanisms underlying chemopreventive effects of flavonoids via multiple signaling nodes within Nrf2-ARE and AhR-XRE gene regulatory networks. Curr. Chem. Biol. 7: , 151–176.
[26]  Chan K, Lu R, Chang JC, Kan YW (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc. Natl. Acad. Sci. USA 93: : 13943–13948. PMID:8943040
[27]  Kim HM, Do CH, Lee DH (2010) Taurine reduces ER stress in C. elegans. J. Biomed. Sci. 17 Suppl 1: S26. PMID:20804601
[28]  Zhang Y, Crouch DH, Yamamoto M, Hayes JD (2006) Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Biochem. J. 399: : 373–385. PMID:16872277
[29]  Zhang Y, Hayes JD (2013) The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity. Sci. Rep. 3;2006: 1–16 DOI: 10.1038/srep02006. PMID:23774320.
[30]  Tsuchiya Y, Morita T, Kim M, Iemura S, Natsume T, et al.. (2011) Dual Regulation of the Transcriptional Activity of Nrf1 by b-TrCP- and Hrd1-Dependent Degradation Mechanisms. Mol. Cell Biol. 31: : 4500–4512. PMID:21911472
[31]  Witte MD, Horst D, Wiertz EJ, van der Marel GA, Overkleeft HS (2009) Synthesis and biological evaluation of a chitobiose-based peptide N-glycanase inhibitor library. J. Org. Chem. 74: : 605–616. PMID:19072094
[32]  Zhang Y, Cho YY, Petersen BL, Bode AM, Zhu F, et al.. (2003) Ataxia telangiectasia mutated proteins, MAPKs, and RSK2 are involved in the phosphorylation of STAT3. J. Biol. Chem. 278: : 12650–12659. PMID:12562765
[33]  Wang XJ, Hayes JD, Wolf CR (2006) Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of nrf2 by cancer chemotherapeutic agents. Cancer Res. 66: : 10983–10994. PMID:17108137
[34]  Zhang Y, Hayes JD (2010) Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochem. J. 430: : 497–510. PMID:20629635
[35]  Bailey D, Barreca C, O'Hare P (2007) Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis. Traffic 8: : 1796–1814. PMID:17875199
[36]  Afshar N, Black BE, Paschal BM (2005) Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol. Cell Biol. 25: : 8844–8853. PMID:16199864
[37]  Kang SW, Rane NS, Kim SJ, Garrison JL, Taunton J, et al.. (2006) Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127: : 999–1013. PMID:17129784
[38]  Gafvelin G, von Heijne G (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77: : 401–412. PMID:8181060
[39]  Lorenz H, Hailey DW, Wunder C, Lippincott-Schwartz J (2006) The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc. 1: : 276–279. PMID:17406244
[40]  Zhong Y, Fang S (2012) Live cell imaging of protein dislocation from the endoplasmic reticulum. J. Biol. Chem. 287: , 28057–28066. PMID:22722934
[41]  van Geest M, Lolkema JS (2000) Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol. Mol. Biol. Rev. 64: : 13–33. PMID:10704472
[42]  Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, et al.. (2001) Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis. J. Biol. Chem. 276: : 11775–11782. PMID:11278294
[43]  Yan Q, Lennarz WJ (1999) Oligosaccharyltransferase: a complex multisubunit enzyme of the endoplasmic reticulum. Biochem. Biophys. Res. Commun. 266: : 684–689. PMID:10603306
[44]  Shibatani T, David LL, McCormack AL, Frueh K, Skach WR (2005) Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44: : 5982–5992. PMID:15835887
[45]  Das MK, Sharma RS, Mishra V (2012) Induction of apoptosis by ribosome inactivating proteins: importance of N-glycosidase activity. Appl. Biochem. Biotechnol 166: : 1552–1561. PMID:22262020
[46]  Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P (2007) Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics 89: : 756–768. PMID:17467953
[47]  Sandholzer J, Hoeth M, Piskacek M, Mayer H, de Martin R (2007) A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochem. Biophys. Res. Commun. 360: 370–374. PMID: 17603017
[48]  Stargell LA, Struhl K (1995) The TBP-TFIIA interaction in the response to acidic activators in vivo. Science 269: : 75–78. PMID:7604282
[49]  Zhang J, Hosoya T, Maruyama A, Nishikawa K, Maher JM, et al.. (2007) Nrf2 Neh5 domain is differentially utilized in the transactivation of cytoprotective genes. Biochem. J. 404: : 459–466. PMID:17313370
[50]  Misaghi S, Pacold ME, Blom D, Ploegh HL, Korbel GA (2004) Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem. Biol. 11: : 1677–1687. PMID:15610852
[51]  Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, et al.. (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA 94: : 2007–2012. PMID: 9050895
[52]  Van Noorden CJ (2001) The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem. 103: : 241–251. PMID:11482370
[53]  O'Neill RA (1996) Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J. Chromatogr. A 720: : 201–215. PMID:8601190
[54]  Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Intl. J. Carbohydr. Chem. 2012: 1–10. doi: 10.1155/2012/640923
[55]  Epand RM (2006) Cholesterol and the interaction of proteins with membrane domains. Prog. Lipid Res. 45: : 279–294. PMID:16574236
[56]  Goder V, Bieri C, Spiess M (1999) Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell. Biol. 147: : 257–266. PMID:10525533
[57]  Spiro RG (2004) Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol. Life Sci. 61: : 1025–1041. PMID:15112051
[58]  Dowhan W, Bogdanov M (2009) Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78: : 515–540. PMID:19489728
[59]  Langosch D, Arkin IT (2009) Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci. 18: : 1343–1358. PMID:19530249
[60]  Skach WR (2009) Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 16: : 606–612. PMID:19491932
[61]  Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol. 3: : 246–255PMID:11994744
[62]  Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9: : 944–957. PMID:19002207
[63]  Chepelev NL, Bennitz JD, Huang T, McBride S, Willmore WG (2011) The Nrf1 CNC-bZIP protein is regulated by the proteasome and activated by hypoxia. PLoS One 6: : e29167. PMID:22216197
[64]  Biswas M, Phan D, Watanabe M, Chan JY (2011) The Fbw7 tumor suppressor regulates nuclear factor E2 related factor 1 (Nrf1) transcription factor turnover through proteasome-mediated proteolysis. J. Biol. Chem 286: : 39282–39289. PMID:21953459
[65]  Katiyar S, Joshi S, Lennarz WJ (2005) The retratranslocation protein Derlin-1 binds peptide:N-glycanase to the endoplasmic reticulum. Mol. Biol. Cell 16: : 4584–4594. PMID:16055502
[66]  Allen MD, Buchberger A, Bycroft M (2006) The PUB domain functions as a p97 binding module in human peptide:N-glycanase. J. Biol. Chem. 281: : 25502–25508. PMID:16807242
[67]  Suzuki T, Park MA, Kwofie MA, Lennarz WJ (2001) Rad23 provides a link between the Png1 deglycosylating enzyme and the 26S proteasome in yeast. J. Biol. Chem. 276: : 21601–21607. PMID:11259433
[68]  Yoshida Y, Tanaka K (2010) Lectin-like ERAD player in ER and cytosol. Biochim. Biophys. Acta 1800: : 172–180. PMID:19665047
[69]  Swanson R, Locher M, Hochstrasser M (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Mata2 repressor degradation. Gene Dev. 15: : 2660–2674PMID:11641273
[70]  Bowie JU (2006) Flip-flopping membrane proteins. Nat. Struct. Mol. Biol. 13: : 94–96. PMID:16462808
[71]  Holthuis JC, Levine TP (2005) Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol. 6: : 209–220. PMID:15738987
[72]  Caterina JJ, Donze D, Sun CW, Ciavatta DJ, Townes TM (1994) Cloning and functional characterization of LCR-F1: a bZIP transcription factor that activates erythroid-specific, human globin gene expression. Nucleic Acids Res. 22: : 2383–2391PMID:8036168
[73]  Novotny V, Prieschl EE, Csonga R, Fabjani G, Baumruker T (1998) Nrf1 in a complex with fosB, c-jun, junD and ATF2 forms the AP1 component at the TNF alpha promoter in stimulated mast cells. Nucleic Acids Res. 26: : 5480–5485. PMID:9826775
[74]  Prieschl EE, Novotny V, Csonga R, Jaksche D, Elbe-Burger A, et al.. (1998) A novel splice variant of the transcription factor Nrf1 interacts with the TNFalpha promoter and stimulates transcription. Nucleic Acids Res. 26: : 2291–2297. PMID:9580677
[75]  Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, et al.. (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6: : 857–868. PMID:11683914
[76]  Blackwell TK, Bowerman B, Priess JR, Weintraub H (1994) Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science 266: : 621–628. PMID:7939715

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133