全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Apelin Increases Cardiac Contractility via Protein Kinase Cε- and Extracellular Signal-Regulated Kinase-Dependent Mechanisms

DOI: 10.1371/journal.pone.0093473

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2) and myosin light chain kinase (MLCK) to the positive inotropic effect of apelin. Methods and Results In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. Conclusions Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure.

References

[1]  Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, et al. (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251: 471–476 doi: 10.1006/bbrc.1998.9489.
[2]  O’Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, et al. (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136: 355–360. doi: 10.1016/0378-1119(93)90495-o
[3]  Pitkin SL, Maguire JJ, Bonner TI, Davenport AP (2010) International union of basic and clinical pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev 62: 331 doi: 10.1124/pr.110.002949.
[4]  Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, et al. (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest 118: 3343–3354 doi: 10.1172/JCI34871.
[5]  Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, et al. (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res Cardiol 102: 518–528 doi: 10.1007/s00395-007-0671-2.
[6]  Dai T, Ramirez-Correa G, Gao WD (2006) Apelin increases contractility in failing cardiac muscle. Eur J Pharmacol 553: 222–228 doi: 10.1016/j.ejphar.2006.09.034.
[7]  Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J, et al. (2010) Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation 121: 1818–1827 doi: 10.1161/CIRCULATIONAHA.109.911339.
[8]  Scimia MC, Hurtado C, Ray S, Metzler S (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488: 394–398 doi: 10.1038/nature11263.
[9]  Barnes GD, Alam S, Carter G, Pedersen CM, Lee KM, et al. (2013) Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure. Circ Hear Fail 6: 482–491 doi: 10.1161/CIRCHEARTFAILURE.111.000077.
[10]  Chamberland C, Barajas-Martinez H, Haufe V, Fecteau M-H, Delabre J-F, et al. (2010) Modulation of canine cardiac sodium current by Apelin. J Mol Cell Cardiol 48: 694–701 doi: 10.1016/j.yjmcc.2009.12.011.
[11]  Falc?o-Pires I, Gon?alves N, Henriques-Coelho T, Moreira-Gon?alves D, Roncon-Albuquerque R, et al. (2009) Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol Hear Circ Physiol 296: H2007–14 doi: 10.1152/ajpheart.00089.2009.
[12]  Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54: 598–604 doi: 10.1161/HYPERTENSIONAHA.109.134619.
[13]  Cheng X, Cheng XS, Pang CCY (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470: 171–175 doi: 10.1016/S0014-2999(03)01821-1.
[14]  Kuba K, Zhang L, Imai Y, Arab S, Chen M, et al. (2007) Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circ Res 101: e32–42 doi: 10.1161/CIRCRESAHA.107.158659.
[15]  Szokodi I, Tavi P, F?ldes G, Voutilainen-Myllyl? S, Ilves M, et al. (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91: 434–440 doi: 10.1161/01.RES.0000033522.37861.69.
[16]  Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, et al. (2004) Apelin has in vivo inotropic effects on normal and failing hearts. Circulation 110: II–187-93 doi: 10.1161/01.CIR.0000138382.57325.5c.
[17]  Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, et al. (2007) Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357: 889–895 doi: 10.1016/j.bbrc.2007.04.017.
[18]  F?ldes G, Horkay F, Szokodi I, Vuolteenaho O, Ilves M, et al. (2003) Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun 308: 480–485 doi: 10.1016/S0006-291X(03)01424-4.
[19]  Chen MM, Ashley EA, Deng DXF, Tsalenko A, Deng A, et al. (2003) Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108: 1432–1439 doi: 10.1161/01.CIR.0000091235.94914.75.
[20]  Pi Y, Zhang D, Kemnitz KR, Wang H, Walker JW (2003) Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium. J Physiol 552: 845–857 doi: 10.1113/jphysiol.2003.045260.
[21]  Kr?mer BK, Smith TW, Kelly RA (1991) Endothelin and increased contractility in adult rat ventricular myocytes. Role of intracellular alkalosis induced by activation of the protein kinase C-dependent Na-H exchanger. Circ Res 68: 269–279 doi: 10.1161/01.RES.68.1.269.
[22]  Kang M, Walker JW (2006) Endothelin-1 and PKC induce positive inotropy without affecting pHi in ventricular myocytes. Exp Biol Med 231: 865–870.
[23]  Venema RC, Raynor RL, Noland TA, Kuo JF (1993) Role of protein kinase C in the phosphorylation of cardiac myosin light chain 2. Biochem J 294: 401–406.
[24]  Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, et al. (2010) Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance. J Biol Chem 285: 40819–40829 doi: 10.1074/jbc.M110.160499.
[25]  Hashimoto T, Kihara M, Ishida J, Imai N, Yoshida S, et al. (2006) Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arter Thromb Vasc Biol 26: 1267–1272 doi: 10.1161/01.ATV.0000218841.39828.91.
[26]  Szokodi I, Kerkel? R, Kubin A-M, Sármán B, Pikkarainen S, et al. (2008) Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility. Circulation 118: 1651–1658 doi: 10.1161/CIRCULATIONAHA.107.758623.
[27]  D’Aniello C, Lonardo E, Iaconis S, Guardiola O, Liguoro AM, et al. (2009) G protein–coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ Res 105: 231–238 doi: 10.1161/CIRCRESAHA.109.201186.
[28]  Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y (2004) Apelin (65–77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18: 1909–11 doi: 10.1096/fj.04-1930fje.
[29]  Hunter JC, Korzick DH (2005) Protein kinase C distribution and translocation in rat myocardium: Methodological considerations. J Pharmacol Toxicol Methods 51: 129–138 doi: 10.1016/j.vascn.2004.10.003.
[30]  Hidalgo C, Wu Y, Peng J, Siems WF, Campbell KB, et al. (2006) Effect of diastolic pressure on MLC2v phosphorylation in the rat left ventricle. Arch Biochem Biophys 456: 216–223 doi: 10.1016/j.abb.2006.06.026.
[31]  Kang M, Walker JW (2005) Protein kinase C delta and epsilon mediate positive inotropy in adult ventricular myocytes. J Mol Cell Cardiol 38: 753–764 doi: 10.1016/j.yjmcc.2005.02.017.
[32]  Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, et al. (2004) PKC-α regulates cardiac contractility and propensity toward heart failure. Nat Med 10: 248–254 doi: 10.1038/nm1000.
[33]  Clerk A, Bogoyevitch MA, Anderson MB, Sugden PH (1994) Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 269: 32848–32857.
[34]  Colson BA, Locher MR, Bekyarova T, Patel JR, Fitzsimons DP, et al. (2010) Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development. J Physiol 588: 981–993 doi: 10.1113/jphysiol.2009.183897.
[35]  Heidkamp MC, Bayer AL, Martin JL, Samarel AM (2001) Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C ε and δ in neonatal rat ventricular myocytes. Circ Res 89: 882–890 doi: 10.1161/hh2201.099434.
[36]  Wang C, Du J-F, Wu F, Wang H-C (2008) Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Hear Circ Physiol 294: H2540–6 doi: 10.1152/ajpheart.00046.2008.
[37]  Churchill E, Budas G, Vallentin A, Koyanagi T, Mochly-Rosen D (2008) PKC isozymes in chronic cardiac disease: possible therapeutic targets? Annu Rev Pharmacol Toxicol 48: 569–599 doi: 10.1146/annurev.pharmtox.48.121806.15490?2.
[38]  Mochly-Rosen D, Henrich CJ, Cheever L, Khaner H, Simpson PC (1990) A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Regul 1: 693–706. doi: 10.1091/mbc.1.9.693
[39]  Robia SL, Ghanta J, Robu VG, Walker JW (2001) Localization and kinetics of protein kinase C-epsilon anchoring in cardiac myocytes. Biophys J 80: 2140–2151 doi: 10.1016/S0006-3495(01)76187-5.
[40]  O-Uchi J, Sasaki H, Morimoto S, Kusakari Y, Shinji H, et al. (2008) Interaction of alpha1-adrenoceptor subtypes with different G proteins induces opposite effects on cardiac L-type Ca2+ channel. Circ Res 102: 1378–1388 doi: 10.1161/CIRCRESAHA.107.167734.
[41]  Rajashree R, Blunt BC, Hofmann PA (2005) Modulation of myosin phosphatase targeting subunit and protein phosphatase 1 in the heart. Am J Physiol Hear Circ Physiol 289: H1736–43 doi: 10.1152/ajpheart.00318.2004.
[42]  Kamm KE, Stull JT (2011) Signaling to myosin regulatory light chain in sarcomeres. J Biol Chem 286: 9941–9947 doi: 10.1074/jbc.R110.198697.
[43]  Gu X, Liu X, Xu D, Li X, Yan M, et al. (2010) Cardiac functional improvement in rats with myocardial infarction by up-regulating cardiac myosin light chain kinase with neuregulin. Cardiovasc Res 88: 334–343 doi: 10.1093/cvr/cvq223.
[44]  Riise J, Nguyen CHT, Qvigstad E, Sandnes DL, Osnes J-B, et al. (2008) Prostanoid F receptors elicit an inotropic effect in rat left ventricle by enhancing myosin light chain phosphorylation. Cardiovasc Res 80: 407–415 doi: 10.1093/cvr/cvn216.
[45]  Chan JY, Takeda M, Briggs LE, Graham ML, Lu JT, et al. (2008) Identification of cardiac-specific myosin light chain kinase. Circ Res 102: 571–580 doi: 10.1161/CIRCRESAHA.107.161687.
[46]  Kanaya N, Gable B, Murray PA, Damron DS (2003) Propofol increases phosphorylation of troponin I and myosin light chain 2 via protein kinase C activation in cardiomyocytes. Anesthesiology 98: 1363–71 doi: 10.1097/00000542-200306000-00010.
[47]  Russell FD, Molenaar P (2004) Investigation of signaling pathways that mediate the inotropic effect of urotensin-II in human heart. Cardiovasc Res 63: 673–681 doi: 10.1016/j.cardiores.2004.05.009.
[48]  Grimm M, Mahnecke N, Soja F, El-armouche A, Haas P, et al. (2006) The MLCK-mediated α1-adrenergic inotropic effect in atrial myocardium is negatively modulated by PKCε signaling. Brit J Pharmacol 148: 991–1000 doi: 10.1038/sj.bjp.0706803.
[49]  Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90: 1507 doi: 10.1152/physrev.00054.2009.
[50]  Liao P, Wang S, Wang S, Zheng M, Zheng M, et al. (2002) p38 Mitogen-activated protein kinase mediates a negative inotropic effect in cardiac myocytes. Circ Res 90: 190–196 doi: 10.1161/hh0202.104220.
[51]  Malo ME, Li L, Fliegel L (2007) Mitogen-activated protein kinase-dependent activation of the Na-H exchanger is mediated through phosphorylation of amino acids Ser770 and Ser771. J Biol Chem 282: 6292–6299 doi: 10.1074/jbc.M611073200.
[52]  Zheng M, Zhang SJ, Zhu WZ, Ziman B, Kobilka BK, et al. (2000) β2-adrenergic receptor-induced p38 MAPK activation is mediated by protein kinase A rather than by Gi or Gβγ in adult mouse cardiomyocytes. J Biol Chem 275: 40635–40640 doi: 10.1074/jbc.M006325200.
[53]  Bellahcene M, Jacquet S, Cao XB, Tanno M, Haworth RS, et al. (2006) Activation of p38 mitogen-activated protein kinase contributes to the early cardiodepressant action of tumor necrosis factor. J Am Coll Cardiol 48: 545–555 doi: 10.1016/j.jacc.2006.02.072.
[54]  Kaikkonen L, Magga J, Ronkainen V-P, Koivisto E, Perjes A, et al. (2014) p38α regulates SERCA2a function. J Mol Cell Cardiol 67: 86–93 doi: 10.1016/j.yjmcc.2013.12.005.
[55]  Dorn GW, Souroujon MC, Liron T, Chen CH, Gray MO, et al. (1999) Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci 96: 12798–12803 doi: 10.1073/pnas.96.22.12798.
[56]  Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, et al. (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109: 1938–1941 doi: 10.1161/01.CIR.0000127126.73759.23.
[57]  Wang W, McKinnie SMK, Patel VB, Haddad G, Wang Z, et al. (2013) Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic apelin analogues. J Am Hear Assoc 2: e000249 doi: 10.1161/JAHA.113.000249.
[58]  Wu G, Toyokawa T, Hahn H, Dorn GW (2000) εprotein kinase C in pathological myocardial hypertrophy. J Biol Chem 275: 29927–29930 doi: 10.1074/jbc.C000380200.
[59]  Kehat I, Davis J, Tiburcy M, Accornero F, Saba-El-Leil MK, et al. (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res 108: 176–183 doi: 10.1161/CIRCRESAHA.110.231514.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133