Bardet-Biedl syndrome (BBS) is a genetically heterogeneous inherited human disorder displaying a pleotropic phenotype. Many of the symptoms characterized in the human disease have been reproduced in animal models carrying deletions or knock-in mutations of genes causal for the disorder. Thinning of the cerebral cortex, enlargement of the lateral and third ventricles, and structural changes in cilia are among the pathologies documented in these animal models. Ciliopathy is of particular interest in light of recent studies that have implicated primary neuronal cilia (PNC) in neuronal signal transduction. In the present investigation, we tested the hypothesis that areas of the brain responsible for learning and memory formation would differentially exhibit PNC abnormalities in animals carrying a deletion of the Bbs4 gene (Bbs4-/-). Immunohistochemical localization of adenylyl cyclase-III (ACIII), a marker restricted to PNC, revealed dramatic alterations in PNC morphology and a statistically significant reduction in number of immunopositive cilia in the hippocampus and amygdala of Bbs4-/- mice compared to wild type (WT) littermates. Western blot analysis confirmed the decrease of ACIII levels in the hippocampus and amygdala of Bbs4-/- mice, and electron microscopy demonstrated pathological alterations of PNC in the hippocampus and amygdala. Importantly, no neuronal loss was found within the subregions of amygdala and hippocampus sampled in Bbs4-/- mice and there were no statistically significant alterations of ACIII immunopositive cilia in other areas of the brain not known to contribute to the BBS phenotype. Considered with data documenting a role of cilia in signal transduction these findings support the conclusion that alterations in cilia structure or neurochemical phenotypes may contribute to the cognitive deficits observed in the Bbs4-/- mouse mode.
References
[1]
Laurence JZ, Moon RC (1866) Four cases of “retinitis pigmentosa” occurring in the same family and accompanied by general imperfection of development. Ophtal Rev 2: 32–41.
[2]
Bardet G (1920) Sur un Syndrome d'Obésité infantile avec Polydactylie et Rétinite pigmentaire (Contribution à l'étude des Formes cliniques de l'Obésité hypophysaire). Thesis No.479.
[3]
Biedl A (1922) Ein Geschwisterpaar mit adiposo-genitaler Dystrofie. Deutsch Med Wochenschr 48: 1630.
[4]
Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8: 880–893. doi: 10.1038/nrm2278
[5]
Keppler-Noreuil K, Blumhorst C, Sapp J, Brinckman D, Johnston J, et al. (2011) Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS). BMC Medical Genetics 12: 101. doi: 10.1186/1471-2350-12-101
[6]
Swiderski RE, Agassandian K, Ross JL, Bugge K, Cassell MD, et al. (2012) Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids Barriers CNS 9: 22–35 2045-8118-9-22. doi: 10.1186/2045-8118-9-22
[7]
Sheffield VC, Zhang Q, Heon E, Stone EM, Carmi R (2008) The Bardet-Biedl Syndromes.
[8]
Loktev AV, Zhang Q, Beck JS, Searby CC, Scheetz TE, et al. (2008) A BBSome Subunit Links Ciliogenesis, Microtubule Stability, and Acetylation. Developmental Cell 15: 854–865. doi: 10.1016/j.devcel.2008.11.001
[9]
Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Per?nen J, et al. (2007) A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis. Cell 129: 1201–1213. doi: 10.1016/j.cell.2007.03.053
[10]
Scheidecker S, Etard C, Pierce NW, Geoffroy V, Schaefer E, et al.. (2013) Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). Journal of Medical Genetics (online).
[11]
Jin H, White SR, Shida T, Schulz S, Aguiar M, et al. (2010) The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia. Cell 141: 1208–1219. doi: 10.1016/j.cell.2010.05.015
[12]
Domire J, Green J, Lee K, Johnson A, Askwith C, et al.. (2010) Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cellular and Molecular Life Sciences 1–10.
[13]
Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA 105: 4242–4246. doi: 10.1073/pnas.0711027105
[14]
Seo S, Baye LM, Schulz NP, Beck JS, Zhang Q, et al. (2010) BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci U S A 107: 1488–1493. doi: 10.1073/pnas.0910268107
[15]
Fath MA, Mullins RF, Searby C, Nishimura DY, Wei J, et al. (2005) Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum Mol Genet 14: 1109–1118. doi: 10.1093/hmg/ddi123
[16]
Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, et al. (2004) Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proceedings of the National Academy of Sciences of the United States of America 101: 8664–8669. doi: 10.1073/pnas.0402354101
[17]
Nishimura DY, Fath M, Mullins RF, Searby C, Andrews M, et al. (2004) Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A 101: 16588–16593. doi: 10.1073/pnas.0405496101
[18]
Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, et al. (2005) Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37: 1135–1140. doi: 10.1038/ng1644
[19]
Rahmouni K, Fath MA, Seo S, Thedens DR, Berry CJ, et al. (2008) Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. Journal of Clinical Investigation 118: 1458–1467. doi: 10.1172/jci32357
[20]
Eichers ER, Abd-El-Barr MM, Paylor R, Lewis RA, Bi W, et al. (2006) Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Hum Genet 120: 211–226. doi: 10.1007/s00439-006-0197-y
[21]
Barnett S, Reilly S, Carr L, Ojo I, Beales PL, et al. (2002) Behavioural phenotype of Bardet-Biedl syndrome. J Med Genet 39: e76. doi: 10.1136/jmg.39.12.e76
[22]
Baker K, Northam GB, Chong WK, Banks T, Beales P, et al. (2011) Neocortical and hippocampal volume loss in a human ciliopathy: A quantitative MRI study in Bardet-Biedl syndrome. Am J Med Genet 155: 1–8. doi: 10.1002/ajmg.a.33773
[23]
Davis RE, Swiderski RE, Rahmouni K, Nishimura DY, Mullins RF, et al. (2007) A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci U S A 104: 19422–19427. doi: 10.1073/pnas.0708571104
[24]
Carter CS, Vogel TW, Zhang Q, Seo S, Swiderski RE, et al. (2012) Abnormal development of NG2+PDGFR-alpha+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 18: 1797–1804. doi: 10.1038/nm.2996
[25]
Chamling X, Seo S, Bugge K, Searby C, Guo DF, et al. (2013) Ectopic Expression of Human BBS4 Can Rescue Bardet-Biedl Syndrome Phenotypes in Bbs4 Null Mice. PLoS ONE 8: e59101. doi: 10.1371/journal.pone.0059101
[26]
Bishop GA, Berbari NF, Lewis J, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505: 562–571. doi: 10.1002/cne.21510
[27]
Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annual Review of Physiology 67: 515–529. doi: 10.1146/annurev.physiol.67.040403.101353
[28]
Amador-Arjona A, Elliott J, Miller A, Ginbey A, Pazour GJ, et al. (2011) Primary Cilia Regulate Proliferation of Amplifying Progenitors in Adult Hippocampus: Implications for Learning and Memory. The Journal of Neuroscience 31: 9933–9944. doi: 10.1523/jneurosci.1062-11.2011
[29]
Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annu Rev Genom Human Genet 7: 125–148. doi: 10.1146/annurev.genom.7.080505.115610
[30]
Baker K, Beales PL (2009) Making sense of cilia in disease: the human ciliopathies. Am J Med Genet C Semin Med Genet 151C: 281–295. doi: 10.1002/ajmg.c.30231
[31]
Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA (1999) New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 36: 437–446.
Leroux MR (2007) Taking vesicular transport to the cilium. Cell 129: 1041–1043. doi: 10.1016/j.cell.2007.05.049
[34]
Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111: 39–53. doi: 10.1159/000208212
[35]
Keryer G, Pineda JR, Liot G, Kim J, Dietrich P, et al. (2011) Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease. J Clin Invest 121: 4372–4382. doi: 10.1172/jci57552
[36]
Alberts B, Johnson A, Lewis J, Raff M, Bray D, et al.. (2004) Essential cell biology (2 ed.). New York: Garland Science.
Wong ST, Trinh K, Hacker B, Chan GCK, Lowe G, et al. (2000) Disruption of the Type III Adenylyl Cyclase Gene Leads to Peripheral and Behavioral Anosmia in Transgenic Mice. Neuron 27: 487–497. doi: 10.1016/s0896-6273(00)00060-x
[39]
Wang Z, Phan T, Storm DR (2011) The Type 3 Adenylyl Cyclase Is Required for Novel Object Learning and Extinction of Contextual Memory: Role of cAMP Signaling in Primary Cilia. The Journal of Neuroscience 31: 5557–5561. doi: 10.1523/jneurosci.6561-10.2011
[40]
Guadiana SM, Semple-Rowland S, Daroszewski D, Madorsky I, Breunig JJ, et al. (2013) Arborization of Dendrites by Developing Neocortical Neurons Is Dependent on Primary Cilia and Type 3 Adenylyl Cyclase. The Journal of Neuroscience 33: 2626–2638. doi: 10.1523/jneurosci.2906-12.2013
[41]
Kumamoto N, Gu Y, Wang J, Janoschka S, Takemaru K, et al. (2012) A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci 15: 399–405. doi: 10.1038/nn.3042
[42]
Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6: 2950–2967. doi: 10.1093/neucas/2.4.259-aw
[43]
Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews 26: 321–352. doi: 10.1016/s0149-7634(02)00007-6
[44]
Ledoux JE (2000) Emotion Circuits in the Brain. Annual Review of Neuroscience 23: 155–184. doi: 10.1146/annurev.neuro.23.1.155
[45]
Sah P, Faber ES, Lopez DA, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83: 803–834.
[46]
Paré D, Smith Y (1993) The Intercalated Cell Masses Project to the Central and Medial Nuclei of the Amygdala in Cats. Neuroscience 57: 1077–1090. doi: 10.1016/0306-4522(93)90050-p
[47]
Massinen S, Hokkanen ME, Matsson H, Tammimies K, Tapia-Paez I, et al. (2011) Increased Expression of the Dyslexia Candidate Gene DCDC2 Affects Length and Signaling of Primary Cilia in Neurons. PLoS ONE 6: e20580. doi: 10.1371/journal.pone.0020580
[48]
Yang J, Gao J, Adamian M, Wen XH, Pawlyk B, et al. (2005) The Ciliary Rootlet Maintains Long-Term Stability of Sensory Cilia. Molecular and Cellular Biology 25: 4129–4137. doi: 10.1128/mcb.25.10.4129-4137.2005
[49]
Yang J, Li T (2005) The ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos. Experimental Cell Research 309: 379–389. doi: 10.1016/j.yexcr.2005.05.026
[50]
Yang J, Liu X, Yue G, Adamian M, Bulgakov O, et al. (2002) Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J Cell Biol 159: 431–440. doi: 10.1083/jcb.200207153
[51]
Seeley ES, Nachury MV (2010) The perennial organelle: assembly and disassembly of the primary cilium. Journal of Cell Science 123: 511–518. doi: 10.1242/jcs.061093
[52]
Watson RE Jr, Wiegand SJ, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7: 155–159. doi: 10.1016/0196-9781(86)90076-8
[53]
Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85: 169–171. doi: 10.1016/0304-3940(88)90346-1
[54]
Peyron C (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience 18: 9996–10015.
[55]
Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. 216 pp.