全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Mechanisms Underlying α-Amanitin Resistance in Drosophila melanogaster: A Microarray Analysis

DOI: 10.1371/journal.pone.0093489

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rapid evolution of toxin resistance in animals has important consequences for the ecology of species and our economy. Pesticide resistance in insects has been a subject of intensive study; however, very little is known about how Drosophila species became resistant to natural toxins with ecological relevance, such as α-amanitin that is produced in deadly poisonous mushrooms. Here we performed a microarray study to elucidate the genes, chromosomal loci, molecular functions, biological processes, and cellular components that contribute to the α-amanitin resistance phenotype in Drosophila melanogaster. We suggest that toxin entry blockage through the cuticle, phase I and II detoxification, sequestration in lipid particles, and proteolytic cleavage of α-amanitin contribute in concert to this quantitative trait. We speculate that the resistance to mushroom toxins in D. melanogaster and perhaps in mycophagous Drosophila species has evolved as cross-resistance to pesticides, other xenobiotic substances, or environmental stress factors.

References

[1]  Despres L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22: 298–307. doi: 10.1016/j.tree.2007.02.010
[2]  Feldman CR, Brodie ED Jr, Brodie ED 3rd, Pfrender ME (2012) Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes. Proc Natl Acad Sci U S A 109: 4556–4561. doi: 10.1073/pnas.1113468109
[3]  Bricelj VM, Connell L, Konoki K, Macquarrie SP, Scheuer T, et al. (2005) Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434: 763–767. doi: 10.1038/nature03415
[4]  Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N, et al. (2011) Parallel evolution of Bacillus thuringiensis toxin resistance in lepidoptera. Genetics 189: 675–679. doi: 10.1534/genetics.111.130971
[5]  Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, et al. (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science 297: 2253–2256. doi: 10.1126/science.1074170
[6]  Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14: 3–8. doi: 10.1111/j.1365-2583.2004.00529.x
[7]  Ffrench-Constant RH (2013) The molecular genetics of insecticide resistance. Genetics 194: 807–815. doi: 10.1534/genetics.112.141895
[8]  Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, et al. (2002) Evolution of supergene families associated with insecticide resistance. Science 298: 179–181. doi: 10.1126/science.1076781
[9]  Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, et al. (1992) Environmental and Economic Costs of Pesticide Use. Bioscience 42: 750–760. doi: 10.2307/1311994
[10]  Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170: 447–449. doi: 10.1126/science.170.3956.447
[11]  Jaenike J (1985) Parasite Pressure and the Evolution of Amanitin Tolerance in Drosophila. Evolution 39: 1295–1301. doi: 10.2307/2408786
[12]  Stump AD, Jablonski SE, Bouton L, Wilder JA (2011) Distribution and Mechanism of alpha-Amanitin Tolerance in Mycophagous Drosophila (Diptera: Drosophilidae). Environ Entomol 40: 1604–1612. doi: 10.1603/en11136
[13]  Jaenike J, Grimaldi DA, Sluder AE, Greenleaf AL (1983) Alpha-Amanitin Tolerance in Mycophagous Drosophila. Science 221: 165–167. doi: 10.1126/science.221.4606.165
[14]  Phillips JP, Willms J, Pitt A (1982) alpha-amanitin resistance in three wild strains of Drosophila melanogaster. Can J Genet Cytol 24: 151–162.
[15]  Begun DJ, Whitley P (2000) Genetics of alpha-amanitin resistance in a natural population of Drosophila melanogaster. Heredity 85: 184–190. doi: 10.1046/j.1365-2540.2000.00729.x
[16]  Chambers TC, McAvoy EM, Jacobs JW, Eilon G (1990) Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma-cells. J Biol Chem 265: 7679–7686.
[17]  Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, et al. (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci U S A 106: 5731–5736. doi: 10.1073/pnas.0812141106
[18]  Brun A, Cuany A, Le Mouel T, Berge J, Amichot M (1996) Inducibility of the Drosophila melanogaster cytochrome P450 gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem Mol Biol 26: 697–703. doi: 10.1016/s0965-1748(96)00036-7
[19]  Dunkov BC, Guzov VM, Mocelin G, Shotkoski F, Brun A, et al. (1997) The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital. DNA Cell Biol 16: 1345–1356. doi: 10.1089/dna.1997.16.1345
[20]  Giraudo M, Unnithan GC, Le Goff G, Feyereisen R (2010) Regulation of cytochrome P450 expression in Drosophila: Genomic insights. Pestic Biochem Physiol 97: 115–122. doi: 10.1016/j.pestbp.2009.06.009
[21]  Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, et al. (2012) Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS One 7: e40296. doi: 10.1371/journal.pone.0040296
[22]  Pedra JHF, McIntyre LM, Scharf ME, Pittendrigh BR (2004) Genom-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci U S A 101: 7034–7039. doi: 10.1073/pnas.0400580101
[23]  Sun W, Margam VM, Sun L, Buczkowski G, Bennett GW, et al. (2006) Genome-wide analysis of phenobarbital-inducible genes in Drosophila melanogaster. Insect Mol Biol 15: 455–464. doi: 10.1111/j.1365-2583.2006.00662.x
[24]  Wan H, Liu Y, Li M, Zhu S, Li X, et al. (2013) Nrf2/Maf binding site-containing functional Cyp6a2 allele is associated with DDT resistance in Drosophila melanogaster. Pest Manag Sci. doi: 10.1002/ps.3645
[25]  Amichot M, Tares S, Brun-Barale A, Arthaud L, Bride JM, et al. (2004) Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur J Biochem 271: 1250–1257. doi: 10.1111/j.1432-1033.2004.04025.x
[26]  Brandt A, Scharf M, Pedra JH, Holmes G, Dean A, et al. (2002) Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Mol Biol 11: 337–341. doi: 10.1046/j.1365-2583.2002.00344.x
[27]  Festucci-Buselli RA, Carvalho-Dias AS, de Oliveira-Andrade M, Caixeta-Nunes C, Li HM, et al. (2005) Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Mol Biol 14: 69–77. doi: 10.1111/j.1365-2583.2005.00532.x
[28]  Le Goff G, Boundy S, Daborn PJ, Yen JL, Sofer L, et al. (2003) Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem Mol Biol 33: 701–708. doi: 10.1016/s0965-1748(03)00064-x
[29]  McDonnell CM, King D, Comeron JM, Li H, Sun W, et al. (2012) Evolutionary toxicogenomics: diversification of the Cyp12d1 and Cyp12d3 genes in Drosophila species. J Mol Evol 74: 281–296. doi: 10.1007/s00239-012-9506-3
[30]  Moskalev A, Shaposhnikov M, Snezhkina A, Kogan V, Plyusnina E, et al. (2014) Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One 9: e86051. doi: 10.1371/journal.pone.0086051
[31]  Sun LJ, Schemerhorn B, Jannasch A, Walters KR, Adamec J, et al. (2011) Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and -resistant Drosophila melanogaster strains in response to DDT and oxidative stress. Pestic Biochem Physiol 100: 7–15. doi: 10.1016/j.pestbp.2011.01.009
[32]  Daborn PJ, Lumb C, Boey A, Wong W, Ffrench-Constant RH, et al. (2007) Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochem Mol Biol 37: 512–519. doi: 10.1016/j.ibmb.2007.02.008
[33]  Guzov VM, Unnithan GC, Chernogolov AA, Feyereisen R (1998) CYP12A1, a mitochondrial cytochrome P450 from the house fly. Arch Biochem Biophys 359: 231–240. doi: 10.1006/abbi.1998.0901
[34]  Yepiskoposyan H, Egli D, Fergestad T, Selvaraj A, Treiber C, et al. (2006) Transcriptome response to heavy metal stress in Drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res 34: 4866–4877. doi: 10.1093/nar/gkl606
[35]  Neal SJ, Karunanithi S, Best A, So AKC, Tanguay RM, et al. (2006) Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiol Genomics 25: 493–501. doi: 10.1152/physiolgenomics.00195.2005
[36]  Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, et al. (2011) The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol 41: 203–209. doi: 10.1016/j.ibmb.2010.12.005
[37]  Dierick HA, Greenspan RJ (2006) Molecular analysis of flies selected for aggressive behavior. Nat Genet 38: 1023–1031. doi: 10.1038/ng1864
[38]  Huang QY, Sun PD, Zhou XG, Lei CL (2012) Characterization of Head Transcriptome and Analysis of Gene Expression Involved in Caste Differentiation and Aggression in Odontotermes formosanus (Shiraki). Plos One 7: e50383 doi:10.1371/journal.pone.0050383.
[39]  Wang LM, Dankert H, Perona P, Anderson DJ (2008) A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci U S A 105: 5657–5663. doi: 10.1073/pnas.0801327105
[40]  Hansen BH, Altin D, Hessen KM, Dahl U, Breitholtz M, et al. (2008) Expression of ecdysteroids and cytochrome P450 enzymes during lipid turnover and reproduction in Calanus finmarchicus (Crustacea: Copepoda). General and Comparative Endocrinology 158: 115–121. doi: 10.1016/j.ygcen.2008.05.013
[41]  Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, et al. (2005) Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc Natl Acad Sci U S A 102: 12807–12812. doi: 10.1073/pnas.0503709102
[42]  Wang SP, He GL, Chen RR, Li F, Li GQ (2012) The Involvement of Cytochrome P450 Monooxygenases in Methanol Elimination in Drosophila Melanogaster Larvae. Arch Insect Biochem Physiol 79: 264–275. doi: 10.1002/arch.21021
[43]  Kang J, Kim J, Choi KW (2011) Novel cytochrome P450, cyp6a17, is required for temperature preference behavior in Drosophila. PLoS One 6: e29800. doi: 10.1371/journal.pone.0029800
[44]  Thomas AM, Hui C, South A, McVey M (2013) Common Variants of Drosophila melanogaster Cyp6d2 Cause Camptothecin Sensitivity and Synergize With Loss of Brca2. G3 3: 91–99. doi: 10.1534/g3.112.003996
[45]  Jumbo-Lucioni PP, Hopson ML, Hang D, Liang YL, Jones DP, et al. (2013) Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis Model Mech 6: 84–94.
[46]  King-Jones K, Horner MA, Lam G, Thummel CS (2006) The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 4: 37–48. doi: 10.1016/j.cmet.2006.06.006
[47]  Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell 14: 76–85. doi: 10.1016/j.devcel.2007.12.002
[48]  Sykiotis GP, Bohmann D (2010) Stress-Activated Cap'n'collar Transcription Factors in Aging and Human Disease. Sci Signal 3. doi: 10.1126/scisignal.3112re3
[49]  Peiren N, de Graaf DC, Vanrobaeys F, Danneels EL, Devreese B, et al. (2008) Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon 52: 72–83. doi: 10.1016/j.toxicon.2008.05.003
[50]  Rahman MM, Ma G, Roberts HLS, Schmidt O (2006) Cell-free immune reactions in insects. J Insect Physiol 52: 754–762. doi: 10.1016/j.jinsphys.2006.04.003
[51]  Mullner H, Daum G (2004) Dynamics of neutral lipid storage in yeast. Acta Biochim Pol 51: 323–347.
[52]  Howell BA, Chauhan A (2010) Current and Emerging Detoxification Therapies for Critical Care. Materials 3: 2483–2505. doi: 10.3390/ma3042483
[53]  Mansuy D (1998) The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121: 5–14. doi: 10.1016/s0742-8413(98)10026-9
[54]  Ranson H, Hemingway J (2005) Mosquito glutathione transferases. Gluthione Transferases and Gamma-Glutamyl Transpeptidases 401: 226–241. doi: 10.1016/s0076-6879(05)01014-1
[55]  Luque T, Okano K, O'Reilly DR (2002) Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. Eur J Biochem 269: 819–825. doi: 10.1046/j.0014-2956.2001.02723.x
[56]  Daborn P, Boundy S, Yen J, Pittendrigh B, ffrench-Constant R (2001) DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics 266: 556–563. doi: 10.1007/s004380100531
[57]  Joussen N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64: 65–73. doi: 10.1002/ps.1472
[58]  Harrop TW, Sztal T, Lumb C, Good RT, Daborn PJ, et al. (2014) Evolutionary changes in gene expression, coding sequence and copy-number at the cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila. PLoS One 9: e84879. doi: 10.1371/journal.pone.0084879
[59]  Clark AG, Shamaan NA (1984) Evidence That Ddt-Dehydrochlorinase from the Housefly Is a Glutathione S-Transferase. Pestic Biochem Physiol 22: 249–261. doi: 10.1016/0048-3575(84)90018-x
[60]  Clark AG, Shamaan NA, Sinclair MD, Dauterman WC (1986) Insecticide Metabolism by Multiple Glutathione S-Transferases in 2 Strains of the Housefly, Musca-Domestica (L). Pestic Biochem Physiol 25: 169–175. doi: 10.1016/0048-3575(86)90044-1
[61]  Wang JY, Mccommas S, Syvanen M (1991) Molecular-Cloning of a Glutathione-S-Transferase Overproduced in an Insecticide-Resistant Strain of the Housefly (Musca-Domestica). Mol Gen Genet 227: 260–266. doi: 10.1007/bf00259679
[62]  Fournier D, Bride JM, Poirie M, Berge JB, Plapp FW (1992) Insect Glutathione S-Transferases - Biochemical Characteristics of the Major Forms from Houseflies Susceptible and Resistant to Insecticides. J Biol Chem 267: 1840–1845.
[63]  Prapanthadara LA, Hemingway J, Ketterman AJ (1993) Partial-Purification and Characterization of Glutathione S-Transferases Involved in Ddt Resistance from the Mosquito Anopheles-Gambiae. Pestic Biochem Physiol 47: 119–133. doi: 10.1006/pest.1993.1070
[64]  Prapanthadara LA, Koottathep S, Promtet N, Hemingway J, Ketterman AJ (1996) Purification and characterization of a major glutathione S-transferase from the mosquito Anopheles dirus (Species b). Insect Biochem Mol Biol 26: 277–285. doi: 10.1016/0965-1748(95)00090-9
[65]  Penilla RP, Rodriguez AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, et al. (1998) Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol 12: 217–233. doi: 10.1046/j.1365-2915.1998.00123.x
[66]  Wei SH, Clark AG, Syvanen M (2001) Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem Mol Biol 31: 1145–1153. doi: 10.1016/s0965-1748(01)00059-5
[67]  Ranson H, Rossiter L, Ortelli F, Jensen B, Wang XL, et al. (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 359: 295–304. doi: 10.1042/0264-6021:3590295
[68]  Ortelli F, Rossiter LC, Vontas J, Ranson H, Hemingway J (2003) Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem J 373: 957–963. doi: 10.1042/bj20030169
[69]  Lumjuan N, McCarroll L, Prapanthadara LA, Hemingway J, Ranson H (2005) Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol 35: 861–871. doi: 10.1016/j.ibmb.2005.03.008
[70]  Alias Z, Clark AG (2007) Studies on the glutathione S-transferase proteome of adult Drosophila melanogaster: responsiveness to chemical challenge. Proteomics 7: 3618–3628. doi: 10.1002/pmic.200700070
[71]  Gunasekaran K, Muthukumaravel S, Sahu SS, Vijayakumar T, Jambulingam P (2011) Glutathione S transferase activity in Indian vectors of malaria: A defense mechanism against DDT. J Med Entomol 48: 561–569. doi: 10.1603/me10194
[72]  Howell B, Chauhan A (2008) Uptake of amitriptyline and nortriptyline with liposomes, proteins, and serum: implications for drug detoxification. J Colloid Interface Sci 319: 81–93. doi: 10.1016/j.jcis.2007.11.018
[73]  Perlman SJ, Jaenike J (2003) Infection success in novel hosts: an experimental and phylogenetic study of Drosophila-parasitic nematodes. Evolution 57: 544–557. doi: 10.1554/0014-3820(2003)057[0544:isinha]2.0.co;2
[74]  Misra JR, Horner MA, Lam G, Thummel CS (2011) Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes Dev 25: 1796–1806. doi: 10.1101/gad.17280911
[75]  Willoughby L, Chung H, Lumb C, Robin C, Batterham P, et al. (2006) A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol 36: 934–942. doi: 10.1016/j.ibmb.2006.09.004
[76]  Hallen HE, Luo H, Scott-Craig JS, Walton JD (2007) Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci U S A 104: 19097–19101. doi: 10.1073/pnas.0707340104
[77]  Tuno N, Takahashi KH, Yamashita H, Osawa N, Tanaka C (2007) Tolerance of Drosophila flies to ibotenic acid poisons in mushrooms. J Chem Ecol 33: 311–317. doi: 10.1007/s10886-006-9228-3
[78]  Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, et al. (2001) Minimum information about a microarray experiment (MIAME) - toward standards for microarray data. Nat Genet 29: 365–371.
[79]  Persson S, Wei HR, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A 102: 8633–8638. doi: 10.1073/pnas.0503392102
[80]  Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, et al. (2006) Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol 142: 762–774. doi: 10.1104/pp.106.080358
[81]  Saul MC, Gessay GM, Gammie SC (2012) A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS One 7: e38128. doi: 10.1371/journal.pone.0038128
[82]  Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3. doi: 10.2202/1544-6115.1027
[83]  Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573: 83–92. doi: 10.1016/j.febslet.2004.07.055
[84]  Kadota K, Shimizu K (2011) Evaluating methods for ranking differentially expressed genes applied to microArray quality control data. BMC Bioinformatics 12: 227. doi: 10.1186/1471-2105-12-227
[85]  Laing E, Smith CP (2010) RankProdIt: A web-interactive Rank Products analysis tool. BMC Res Notes: 221. doi: 10.1186/1756-0500-3-221
[86]  Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol 57: 289–300.
[87]  Zdobnov EM, Apweiler R (2001) InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847–848. doi: 10.1093/bioinformatics/17.9.847
[88]  Wei HR, Gou JQ, Yordanov Y, Zhang HX, Thakur R, et al. (2013) Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth. J Plant Res 126: 305–320. doi: 10.1007/s10265-012-0524-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133