全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Reduced Genome of the Francisella tularensis Live Vaccine Strain (LVS) Encodes Two Iron Acquisition Systems Essential for Optimal Growth and Virulence

DOI: 10.1371/journal.pone.0093558

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bacterial pathogens require multiple iron-specific acquisition systems for survival within the iron-limiting environment of the host. Francisella tularensis is a virulent intracellular pathogen that can replicate in multiple cell-types. To study the interrelationship of iron acquisition capability and virulence potential of this organism, we generated single and double deletion mutants within the ferrous iron (feo) and ferric-siderophore (fsl) uptake systems of the live vaccine strain (LVS). The Feo system was disrupted by a partial deletion of the feoB gene (ΔfeoB′), which led to a growth defect on iron-limited modified Muller Hinton agar plates. 55Fe uptake assays verified that the ΔfeoB′ mutant had lost the capacity for ferrous iron uptake but was still competent for 55Fe-siderophore-mediated ferric iron acquisition. Neither the ΔfeoB′ nor the siderophore-deficient ΔfslA mutant was defective for replication within J774A.1 murine macrophage-like cells, thus demonstrating the ability of LVS to survive using either ferrous or ferric sources of intracellular iron. A LVS ΔfslA ΔfeoB′ mutant defective for both ferrous iron uptake and siderophore production was isolated in the presence of exogenous F. tularensis siderophore. In contrast to the single deletion mutants, the ΔfslA ΔfeoB′ mutant was unable to replicate within J774A.1 cells and was attenuated in virulence following intraperitoneal infection of C57BL/6 mice. These studies demonstrate that the siderophore and feoB-mediated ferrous uptake systems are the only significant iron acquisition systems in LVS and that they operate independently. While one system can compensate for loss of the other, both are required for optimal growth and virulence.

References

[1]  Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13: 509–519. doi: 10.1016/j.chom.2013.04.010
[2]  Latunde-Dada GO (2009) Iron metabolism: microbes, mouse, and man. Bioessays 31: 1309–1317. doi: 10.1002/bies.200900101
[3]  Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2: 946–953. doi: 10.1038/nrmicro1046
[4]  Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med 33: 1037–1046. doi: 10.1016/s0891-5849(02)01006-7
[5]  Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54: 881–941. doi: 10.1146/annurev.micro.54.1.881
[6]  Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4: 172–177. doi: 10.1016/s1369-5274(00)00184-3
[7]  Litwin CM, Calderwood SB (1993) Role of iron regulation of virulence genes. Clin Microbiol Rev 6: 137–149.
[8]  Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15: 631–646. doi: 10.1128/cmr.15.4.631-646.2002
[9]  Fortier AH, Slayter MV, Ziemba R, Meltzer MS, Nacy CA (1991) Live vaccine strain of Francisella tularensis: infection and immunity in mice. Infect Immun 59: 2922–2928.
[10]  Elkins KL, Cowley SC, Bosio CM (2003) Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain. Microbes Infect 5: 135–142. doi: 10.1016/s1286-4579(02)00084-9
[11]  Golovliov I, Baranov V, Krocova Z, Kovarova H, Sj?stedt A (2003) An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71: 5940–5950. doi: 10.1128/iai.71.10.5940-5950.2003
[12]  Clemens DL, Lee BY, Horwitz MA (2004) Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72: 3204–3217. doi: 10.1128/iai.72.6.3204-3217.2004
[13]  Fortier AH, Leiby DA, Narayanan RB, Asafoadjei E, Crawford RM, et al. (1995) Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect Immun 63: 1478–1483.
[14]  Sullivan JT, Jeffery EF, Shannon JD, Ramakrishnan G (2006) Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol 188: 3785–3795. doi: 10.1128/jb.00027-06
[15]  Deng K, Blick RJ, Liu W, Hansen EJ (2006) Identification of Francisella tularensis genes affected by iron limitation. Infect Immun 74: 4224–4236. doi: 10.1128/iai.01975-05
[16]  Lindgren H, Honn M, Golovlev I, Kadzhaev K, Conlan W, et al. (2009) The 58-kilodalton major virulence factor of Francisella tularensis is required for efficient utilization of iron. Infect Immun 77: 4429–4436. doi: 10.1128/iai.00702-09
[17]  Ramakrishnan G, Meeker A, Dragulev B (2008) fslE is necessary for siderophore-mediated iron acquisition in Francisella tularensis Schu S4. J Bacteriol 190: 5353–5361. doi: 10.1128/jb.00181-08
[18]  Kiss K, Liu W, Huntley JF, Norgard MV, Hansen EJ (2008) Characterization of fig operon mutants of Francisella novicida U112. FEMS Microbiol Lett 285: 270–277. doi: 10.1111/j.1574-6968.2008.01237.x
[19]  Ramakrishnan G, Sen B (2014) The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric iron across the outer membrane of Francisella tularensis live vaccine strain. Microbiology 160: 446–457. doi: 10.1099/mic.0.072835-0
[20]  Ramakrishnan G, Sen B, Johnson R (2012) Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J Biol Chem 287: 25191–25202. doi: 10.1074/jbc.m112.371856
[21]  Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51: 407–417. doi: 10.1046/j.1365-2958.2003.03861.x
[22]  Reddy PV, Puri RV, Chauhan P, Kar R, Rohilla A, et al. (2013) Disruption of mycobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth and virulence. J Infect Dis 208: 1255–1265. doi: 10.1093/infdis/jit250
[23]  De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, et al. (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97: 1252–1257. doi: 10.1073/pnas.97.3.1252
[24]  Rohmer L, Brittnacher M, Svensson K, Buckley D, Haugen E, et al. (2006) Potential source of Francisella tularensis live vaccine strain attenuation determined by genome comparison. Infect Immun 74: 6895–6906. doi: 10.1128/iai.01006-06
[25]  Salomonsson E, Kuoppa K, Forslund AL, Zingmark C, Golovliov I, et al. (2009) Reintroduction of two deleted virulence loci restores full virulence to the live vaccine strain of Francisella tularensis. Infect Immun 77: 3424–3431. doi: 10.1128/iai.00196-09
[26]  Kammler M, Sch?n C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175: 6212–6219.
[27]  Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo—transport of ferrous iron into bacteria. Biometals 19: 143–157. doi: 10.1007/s10534-006-0003-2
[28]  Kim H, Lee H, Shin D (2012) The FeoA protein is necessary for the FeoB transporter to import ferrous iron. Biochem Biophys Res Commun 423: 733–738. doi: 10.1016/j.bbrc.2012.06.027
[29]  Kim H, Lee H, Shin D (2013) The FeoC protein leads to high cellular levels of the Fe(II) transporter FeoB by preventing FtsH protease regulation of FeoB in Salmonella enterica. J Bacteriol 195: 3364–3370. doi: 10.1128/jb.00343-13
[30]  Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, et al. (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Micriobiol 37: 274–286. doi: 10.1046/j.1365-2958.2000.01987.x
[31]  Robey M, Cianciotto NP (2002) Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70: 5659–5669. doi: 10.1128/iai.70.10.5659-5669.2002
[32]  Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A (2006) Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 74: 5433–5444. doi: 10.1128/iai.00052-06
[33]  Fetherston JD, Mier I Jr, Truszczynska H, Perry RD (2012) The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague. Infect Immun 80: 3880–3891. doi: 10.1128/iai.00086-12
[34]  Tsolis RM, B?umler AJ, Heffron F, Stojiljkovic I (1996) Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 64: 4549–4556.
[35]  Boyer E, Bergevin I, Malo D, Gros P, Cellier MF (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70: 6032–6042. doi: 10.1128/iai.70.11.6032-6042.2002
[36]  Runyen-Janecky LJ, Reeves SA, Gonzales EG, Payne SM (2003) Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun 71: 1919–1928. doi: 10.1128/iai.71.4.1919-1928.2003
[37]  Marlovits TC, Haase W, Herrmann C, Aller SG, Unger VM (2002) The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci U S A 99: 16243–16248. doi: 10.1073/pnas.242338299
[38]  Su J, Yang J, Zhao D, Kawula TH, Banas JA, et al. (2007) Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75: 3089–3101. doi: 10.1128/iai.01865-06
[39]  Thomas-Charles CA, Zheng H, Palmer LE, Mena P, Thanassi DG, et al. (2013) FeoB-mediated uptake of iron by Francisella tularensis. Infect Immun 81: 2828–2837. doi: 10.1128/iai.00170-13
[40]  Chamberlain RE (1965) Evaluation of Live Tularemia Vaccine Prepared in a Chemically Defined Medium. Appl Microbiol 13: 232–235.
[41]  Shenker M, Chen Y, Hadar Y (1995) Rapid method for accurate determination of colorless siderophores and synthetic chelates. Soil Sci Soc Am J 59: 1612–1618. doi: 10.2136/sssaj1995.03615995005900060015x
[42]  Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47–56. doi: 10.1016/0003-2697(87)90612-9
[43]  Sen B, Meeker A, Ramakrishnan G (2010) The fslE homolog, FTL_0439 (fupA/B), mediates siderophore-dependent iron uptake in Francisella tularensis LVS. Infect Immun 78: 4276–4285. doi: 10.1128/iai.00503-10
[44]  Eberl L, Kristensen CS, Givskov M, Grohmann E, Gerlitz M, et al. (1994) Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Mol Microbiol 12: 131–141. doi: 10.1111/j.1365-2958.1994.tb01002.x
[45]  Wehrly TD, Chong A, Virtaneva K, Sturdevant DE, Child R, et al. (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol 11: 1128–1150. doi: 10.1111/j.1462-5822.2009.01316.x
[46]  Pechous R, Celli J, Penoske R, Hayes SF, Frank DW, et al. (2006) Construction and characterization of an attenuated purine auxotroph in a Francisella tularensis live vaccine strain. Infect Immun 74: 4452–4461. doi: 10.1128/iai.00666-06
[47]  Santiago AE, Cole LE, Franco A, Vogel SN, Levine MM, et al. (2009) Characterization of rationally attenuated Francisella tularensis vaccine strains that harbor deletions in the guaA and guaB genes. Vaccine 27: 2426–2436. doi: 10.1016/j.vaccine.2009.02.073
[48]  Pan X, Tamilselvam B, Hansen EJ, Daefler S (2010) Modulation of iron homeostasis in macrophages by bacterial intracellular pathogens. BMC Microbiol 10: 64. doi: 10.1186/1471-2180-10-64
[49]  Olakanmi O, Gunn JS, Su S, Soni S, Hassett DJ, et al. (2010) Gallium disrupts iron uptake by intracellular and extracellular Francisella strains and exhibits therapeutic efficacy in a murine pulmonary infection model. Antimicrob Agents Chemother 54: 244–253. doi: 10.1128/aac.00655-09
[50]  Weaver EA, Wyckoff EE, Mey AR, Morrison R, Payne SM (2013) FeoA and FeoC are essential components of Vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 195: 4826–4835. doi: 10.1128/jb.00738-13
[51]  Larsson P, Elfsmark D, Svensson K, Wikstr?m P, Forsman M, et al. (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PloS Pathog 5: e1000472. doi: 10.1371/journal.ppat.1000472
[52]  Sj?din A, Svensson K, Ohrman C, Ahlinder J, Lindgren P, et al. (2012) Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 13: 268. doi: 10.1186/1471-2164-13-268
[53]  Rohmer L, Fong C, Abmayr S, Wasnick M, Larson Freeman TJ, et al. (2007) Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8: R102. doi: 10.1186/gb-2007-8-6-r102
[54]  Kieffer TL, Cowley S, Nano FE, Elkins KL (2003) Francisella novicida LPS has greater immunobiological activity in mice than F. tularensis LPS, and contributes to F. novicida murine pathogenesis. Microbes Infect 5: 397–403. doi: 10.1016/s1286-4579(03)00052-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133