Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids.
References
[1]
Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7: 349–359. doi: 10.1038/nrg1840
[2]
Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340: 1190–1194. doi: 10.1126/science.1234852
[3]
Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, et al. (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6: 25–36. doi: 10.1016/j.stem.2009.11.013
[4]
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007. doi: 10.1038/nature06196
[5]
Koo BK, Stange DE, Sato T, Karthaus W, Farin HF, et al. (2011) Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9: 81–83. doi: 10.1038/nmeth.1802
[6]
Sato T, Clevers H (2013) Primary mouse small intestinal epithelial cell cultures. Methods Mol Biol 945: 319–328. doi: 10.1007/978-1-62703-125-7_19
[7]
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, et al. (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141: 1762–1772. doi: 10.1053/j.gastro.2011.07.050
[8]
Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, et al. (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469: 415–418. doi: 10.1038/nature09637
[9]
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, et al. (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459: 262–265. doi: 10.1038/nature07935
[10]
Cao L, Gibson JD, Miyamoto S, Sail V, Verma R, et al. (2011) Intestinal lineage commitment of embryonic stem cells. Differentiation 81: 1–10. doi: 10.1016/j.diff.2010.09.182
[11]
Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, et al. (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470: 105–109. doi: 10.1038/nature09691
[12]
Subramanian K, Owens DJ, Raju R, Firpo M, O'Brien TD, et al. (2014) Spheroid Culture for Enhanced Differentiation of Human Embryonic Stem Cells to Hepatocyte-Like Cells. Stem Cells Dev. 23: 124–131. doi: 10.1089/scd.2013.0097
[13]
Takebe T, Sekine K, Enomura M, Koike H, Kimura M, et al. (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499: 481–484. doi: 10.1038/nature12271
[14]
Yu B, He ZY, You P, Han QW, Xiang D, et al. (2013) Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell 13: 328–340. doi: 10.1016/j.stem.2013.06.017
[15]
Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, et al. (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 16: 118–126. doi: 10.1038/ncb2894
[16]
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, et al. (2013) Cerebral organoids model human brain development and microcephaly. Nature 501: 373–379. doi: 10.1038/nature12517
[17]
Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31: 397–405. doi: 10.1016/j.tibtech.2013.04.004
[18]
Gasiunas G, Siksnys V (2013) RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol 21: 562–567. doi: 10.1016/j.tim.2013.09.001
[19]
Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10: 957–963. doi: 10.1038/nmeth.2649
[20]
Malina A, Mills JR, Cencic R, Yan Y, Fraser J, et al. (2013) Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev 27: 2602–2614. doi: 10.1101/gad.227132.113
[21]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, et al. (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8: 2281–2308. doi: 10.1038/nprot.2013.143
[22]
Breyer B, Jiang W, Cheng H, Zhou L, Paul R, et al. (2001) Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 1: 149–162. doi: 10.2174/1566523013348689
[23]
Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Medicine 7: 33–40.
[24]
Lou J, Xu F, Merkel K, Manske P (1999) Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo. J Orthop Res 17: 43–50. doi: 10.1002/jor.1100170108
[25]
St George JA (2003) Gene therapy progress and prospects: adenoviral vectors. Gene Ther 10: 1135–1141. doi: 10.1038/sj.gt.3302071
[26]
Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12: 316–328. doi: 10.1038/nrg2971
[27]
Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, et al. (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303: 1684–1686. doi: 10.1126/science.1093587
[28]
He XC, Zhang J, Tong WG, Tawfik O, Ross J, et al. (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36: 1117–1121. doi: 10.1038/ng1430
[29]
Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154: 274–284. doi: 10.1016/j.cell.2013.07.004
[30]
Gao Y, Huang E, Zhang H, Wang J, Wu N, et al. (2013) Crosstalk between Wnt/beta-Catenin and Estrogen Receptor Signaling Synergistically Promotes Osteogenic Differentiation of Mesenchymal Progenitor Cells. PLoS One 8: e82436. doi: 10.1371/journal.pone.0082436
[31]
Kong Y, Zhang H, Chen X, Zhang W, Zhao C, et al. (2013) Destabilization of Heterologous Proteins Mediated by the GSK3beta Phosphorylation Domain of the beta-Catenin Protein. Cell Physiol Biochem 32: 1187–1199. doi: 10.1159/000354518
[32]
Zhang W, Zhang H, Wang N, Zhao C, Zhang H, et al. (2013) Modulation of beta-Catenin Signaling by the Inhibitors of MAP Kinase, Tyrosine Kinase, and PI3-Kinase Pathways. Int J Med Sci 10: 1888–1898. doi: 10.7150/ijms.6019
[33]
Chen X, Luther G, Zhang W, Nan G, Wagner ER, et al. (2013) The E-F Hand Calcium-Binding Protein S100A4 Regulates the Proliferation, Survival and Differentiation Potential of Human Osteosarcoma Cells. Cell Physiol Biochem 32: 1083–1096. doi: 10.1159/000354508
[34]
Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, et al. (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-A: 1544–1552. doi: 10.1016/j.urolonc.2003.12.008
[35]
He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, et al. (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95: 2509–2514. doi: 10.1073/pnas.95.5.2509
[36]
Kang Q, Song WX, Luo Q, Tang N, Luo J, et al. (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18: 545–559. doi: 10.1089/scd.2008.0130
[37]
Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, et al. (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11: 1312–1320. doi: 10.1038/sj.gt.3302298
[38]
Luo J, Deng ZL, Luo X, Tang N, Song WX, et al. (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2: 1236–1247. doi: 10.1038/nprot.2007.135
[39]
Wang Y, Hong S, Li M, Zhang J, Bi Y, et al.. (2013) Noggin resistance contributes to the potent osteogenic capability of BMP9 in mesenchymal stem cells. J Orthop Res.
[40]
He TC, Chan TA, Vogelstein B, Kinzler KW (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99: 335–345. doi: 10.1016/s0092-8674(00)81664-5
[41]
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, et al. (1998) Identification of c-MYC as a target of the APC pathway [see comments]. Science 281: 1509–1512. doi: 10.1126/science.281.5382.1509
[42]
Tang N, Song WX, Luo J, Luo X, Chen J, et al. (2009) BMP9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signaling. J Cell Mol Med 13: 2448–2464. doi: 10.1111/j.1582-4934.2008.00569.x
[43]
He BC, Gao JL, Zhang BQ, Luo Q, Shi Q, et al. (2011) Tetrandrine inhibits Wnt/beta-catenin signaling and suppresses tumor growth of human colorectal cancer. Mol Pharmacol 79: 211–219. doi: 10.1124/mol.110.068668