全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Optogenetic Patterning of Whisker-Barrel Cortical System in Transgenic Rat Expressing Channelrhodopsin-2

DOI: 10.1371/journal.pone.0093706

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rodent whisker-barrel system has been an ideal model for studying somatosensory representations in the cortex. However, it remains a challenge to experimentally stimulate whiskers with a given pattern under spatiotemporal precision. Recently the optogenetic manipulation of neuronal activity has made possible the analysis of the neuronal network with precise spatiotemporal resolution. Here we identified the selective expression of channelrhodopsin-2 (ChR2), an algal light-driven cation channel, in the large mechanoreceptive neurons in the trigeminal ganglion (TG) as well as their peripheral nerve endings innervating the whisker follicles of a transgenic rat. The spatiotemporal pattern of whisker irradiation thus produced a barrel-cortical response with a specific spatiotemporal pattern as evidenced by electrophysiological and functional MRI (fMRI) studies. Our methods of generating an optogenetic tactile pattern (OTP) can be expected to facilitate studies on how the spatiotemporal pattern of touch is represented in the somatosensory cortex, as Hubel and Wiesel did in the visual cortex.

References

[1]  Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56: 339–355. doi: 10.1016/j.neuron.2007.09.017
[2]  Knutsen PM, Ahissar E (2009) Orthogonal coding of object location. Trends Neurosci 32: 101–109. doi: 10.1016/j.tins.2009.03.001
[3]  Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9: 601–612. doi: 10.1038/nrn2411
[4]  Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, et al. (2009) Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 4: e7679. doi: 10.1371/journal.pone.0007679
[5]  Ji ZG, Ito S, Honjoh T, Ohta H, Ishizuka T, et al. (2012) Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS One 7: e32699. doi: 10.1371/journal.pone.0032699
[6]  Honjoh T, Sumiyoshi A, Yokoyama Y, Ji ZG, Ishizuka T, et al. (2013) Optogenetic study of whisker-barrel system – cortical electrophysiology and functional MRI. Jpn J Physiol Sci 69 suppl 1S252.
[7]  Rice FL, Fundin BT, Arvidsson J, Aldskoqius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385: 149–184. doi: 10.1002/(sici)1096-9861(19970825)385:2<149::aid-cne1>3.3.co;2-x
[8]  Ichikawa H, Sugimoto T (2004) The co-expression of P2X3 receptor with VR1 and VRL-1 in the rat trigeminal ganglion. Brain Res 998: 130–135. doi: 10.1016/j.brainres.2003.11.019
[9]  Rein?hl J, Hoheisel U, Unger T, Mense S (2003) Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in rat. Neurosci Lett 338: 25–28. doi: 10.1016/s0304-3940(02)01360-5
[10]  Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449: 103–119. doi: 10.1002/cne.10277
[11]  Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F (2008) The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurons. J Physiol 586: 5101–5118. doi: 10.1113/jphysiol.2008.159384
[12]  Villière V, McLachlan EM (1996) Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol 76: 1924–1941.
[13]  Hu J, Lewin GR (2006) Mechanosensitive currents in the neurites of cultured mouse sensory neurons. J Physiol 577: 815–826. doi: 10.1113/jphysiol.2006.117648
[14]  Coste B, Xiao B, Santos JS, Syeda R, Grandl J, et al. (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483: 176–183. doi: 10.1038/nature10812
[15]  Liu L, Oortgiesen M, Li L, Simon SA (2001) Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J Neurophysiol 85: 745–758.
[16]  Cabanes C, López de Armentia M, Viana F, Belmonte C (2002) Postnatal changes in membrane properties of mice trigeminal ganglion neurons. J Neurophysiol 87: 2398–2407.
[17]  Xu S, Ono K, Inenaga K (2010) Electrophysiological and chemical properties in subclassified acutely dissociated cells of rat trigeminal ganglion by current signatures. J Neurophysiol 104: 3451–3461. doi: 10.1152/jn.00336.2010
[18]  Piao L, Lee H, Park CK, Cho IH, Piao ZG, et al. (2006) Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons. J Neurosci Res 83: 1373–1380. doi: 10.1002/jnr.20810
[19]  Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F (2008) The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurons. J Physiol 586: 5101–5118. doi: 10.1113/jphysiol.2008.159384
[20]  Ooi L, Gigout S, Pettinger L, Gamper N (2013) Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species. J Neurosci 33: 6041–6046. doi: 10.1523/jneurosci.4275-12.2013
[21]  Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8: 451–465. doi: 10.1038/nrn2148
[22]  Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8: 1263–1268. doi: 10.1038/nn1525
[23]  Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54: 85–94. doi: 10.1016/j.neures.2005.10.009
[24]  Armstrong-James M, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68: 1345–1358.
[25]  Ikezoe K, Tamura H, Kimura F, Fujita I (2012) Decorrelation of sensory-evoked neuronal responses in rat barrel cortex during postnatal development. Neurosci Res 73: 312–20. doi: 10.1016/j.neures.2012.05.009
[26]  Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302–306. doi: 10.1038/35018568
[27]  Hirata A, Castro-Alamancos MA (2008) Cortical transformation of wide-field (multiwhisker) sensory responses. J Neurophysiol 100: 358–370. doi: 10.1152/jn.90538.2008
[28]  Viaene AN, Petrof I, Sherman SM (2011) Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci U S A 108: 18156–18161. doi: 10.1073/pnas.1114828108
[29]  Erchova IA, Lebedev MA, Diamond ME (2002) Somatosensory cortical neuronal population activity across states of anaesthesia. Eur J Neurosci 15: 744–752. doi: 10.1046/j.0953-816x.2002.01898.x
[30]  Timofeev I, Chauvette S (2011) Thalamocortical oscillations: local control of EEG slow waves. Curr Top Med Chem 11: 2457–2471. doi: 10.2174/156802611797470376
[31]  Steriade M, Nu?ez A, Amzica F (1993) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13: 3252–3265.
[32]  Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101: 243–276. doi: 10.1016/s0306-4522(00)00353-5
[33]  Ushimaru M, Ueta Y, Kawaguchi Y (2012) Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization. J Neurosci 32: 1730–1746. doi: 10.1523/jneurosci.4883-11.2012
[34]  Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100: 13638–13643. doi: 10.1073/pnas.2235811100
[35]  Sachdev RNS, Ebner FF, Wilson CJ (2004) Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J Neurophysiol 92: 3511–3521. doi: 10.1152/jn.00347.2004
[36]  Civillico EF, Contreras D (2012) Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context. Front Syst Neurosci 6: 25. doi: 10.3389/fnsys.2012.00025
[37]  Hasenstaub A, Sachdev RNS, McCormick DA (2007) State changes rapidly modulate cortical neuronal responsiveness. J Neurosci 27: 9607–9622. doi: 10.1523/jneurosci.2184-07.2007
[38]  Kuki T, Ohshiro T, Ito S, Ji ZG, Fukazawa Y, et al. (2013) Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat. Neurosci Res 75: 35–45. doi: 10.1016/j.neures.2012.10.007
[39]  Watson BO, MacLean JN, Yuste R (2008) UP states protect ongoing cortical activity from thalamic inputs. PLoS One 3: e3971. doi: 10.1371/journal.pone.0003971
[40]  Yang X, Hyder F, Shulman RG (1996) Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci U S A 93: 475–478. doi: 10.1073/pnas.93.1.475
[41]  Sanganahalli BG, Herman P, Hyder F (2008) Frequency-dependent tactile responses in rat brain measured by functional MRI. NMR Biomed 21: 410–416. doi: 10.1002/nbm.1259
[42]  Yu X, Wang S, Chen DY, Dodd S, Goloshevsky A, et al. (2010) 3D mapping of somatotopic reorganization with small animal functional MRI. Neuroimage 49: 1667–1676. doi: 10.1016/j.neuroimage.2009.09.021
[43]  Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357: 1003–1037. doi: 10.1098/rstb.2002.1114
[44]  Martin C, Martindale J, Berwick J, Mayhew J (2006) Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32: 33–48. doi: 10.1016/j.neuroimage.2006.02.021
[45]  Goense J, Merkle H, Logothetis K (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 76: 629–639. doi: 10.1016/j.neuron.2012.09.019
[46]  Sumiyoshi A, Suzuki H, Ogawa T, Riera JJ, Shimokawa H, et al. (2012) Coupling between gamma oscillation and fMRI signal in the rat somatosensory cortex: Its dependence on systemic physiological parameters. Neuroimage 60: 738–746. doi: 10.1016/j.neuroimage.2011.12.082
[47]  Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, et al. (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105: 1393–1405. doi: 10.1152/jn.00828.2010
[48]  Kahn I, Desai M, Knoblich U, Bernstein J, Henninger M, et al. (2011) Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 31: 15086–15091. doi: 10.1523/jneurosci.0007-11.2011
[49]  Abe Y, Sekino M, Terazono Y, Ohsaki H, Fukazawa Y, et al. (2012) Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal formation in rats. Neurosci Res 74: 248–755. doi: 10.1016/j.neures.2012.08.007
[50]  Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41: 798–820.
[51]  Knutsen PM, Piet M, Ahissar E (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26: 8451–8464. doi: 10.1523/jneurosci.1516-06.2006
[52]  O'Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, et al. (2010) Vibrissa-based object localization in head-fixed mice. J Neurosci 30: 1947–1967. doi: 10.1523/jneurosci.3762-09.2010
[53]  Petreanu L, Gutnisky DA, Huber D, Xu NL, O'Connor DH, et al. (2012) Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489: 299–303. doi: 10.1038/nature11321
[54]  Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat's striate cortex. J Physiol 148: 574–591 (republicated in J Physiol 587: 2722–2732, 2009)..
[55]  Nicholls JG, Martin AR, Wallace BG, Fuchs PA (2001) From Neuron to Brain Fourth Edition. Sunderland: Sinauer Associates, Inc.
[56]  Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T (2000) Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 38: 231–236. doi: 10.1016/s0168-0102(00)00176-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133