[1] | Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56: 339–355. doi: 10.1016/j.neuron.2007.09.017
|
[2] | Knutsen PM, Ahissar E (2009) Orthogonal coding of object location. Trends Neurosci 32: 101–109. doi: 10.1016/j.tins.2009.03.001
|
[3] | Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9: 601–612. doi: 10.1038/nrn2411
|
[4] | Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, et al. (2009) Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 4: e7679. doi: 10.1371/journal.pone.0007679
|
[5] | Ji ZG, Ito S, Honjoh T, Ohta H, Ishizuka T, et al. (2012) Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS One 7: e32699. doi: 10.1371/journal.pone.0032699
|
[6] | Honjoh T, Sumiyoshi A, Yokoyama Y, Ji ZG, Ishizuka T, et al. (2013) Optogenetic study of whisker-barrel system – cortical electrophysiology and functional MRI. Jpn J Physiol Sci 69 suppl 1S252.
|
[7] | Rice FL, Fundin BT, Arvidsson J, Aldskoqius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385: 149–184. doi: 10.1002/(sici)1096-9861(19970825)385:2<149::aid-cne1>3.3.co;2-x
|
[8] | Ichikawa H, Sugimoto T (2004) The co-expression of P2X3 receptor with VR1 and VRL-1 in the rat trigeminal ganglion. Brain Res 998: 130–135. doi: 10.1016/j.brainres.2003.11.019
|
[9] | Rein?hl J, Hoheisel U, Unger T, Mense S (2003) Adenosine triphosphate as a stimulant for nociceptive and non-nociceptive muscle group IV receptors in rat. Neurosci Lett 338: 25–28. doi: 10.1016/s0304-3940(02)01360-5
|
[10] | Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449: 103–119. doi: 10.1002/cne.10277
|
[11] | Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F (2008) The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurons. J Physiol 586: 5101–5118. doi: 10.1113/jphysiol.2008.159384
|
[12] | Villière V, McLachlan EM (1996) Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol 76: 1924–1941.
|
[13] | Hu J, Lewin GR (2006) Mechanosensitive currents in the neurites of cultured mouse sensory neurons. J Physiol 577: 815–826. doi: 10.1113/jphysiol.2006.117648
|
[14] | Coste B, Xiao B, Santos JS, Syeda R, Grandl J, et al. (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483: 176–183. doi: 10.1038/nature10812
|
[15] | Liu L, Oortgiesen M, Li L, Simon SA (2001) Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J Neurophysiol 85: 745–758.
|
[16] | Cabanes C, López de Armentia M, Viana F, Belmonte C (2002) Postnatal changes in membrane properties of mice trigeminal ganglion neurons. J Neurophysiol 87: 2398–2407.
|
[17] | Xu S, Ono K, Inenaga K (2010) Electrophysiological and chemical properties in subclassified acutely dissociated cells of rat trigeminal ganglion by current signatures. J Neurophysiol 104: 3451–3461. doi: 10.1152/jn.00336.2010
|
[18] | Piao L, Lee H, Park CK, Cho IH, Piao ZG, et al. (2006) Mechanosensitivity of voltage-gated K+ currents in rat trigeminal ganglion neurons. J Neurosci Res 83: 1373–1380. doi: 10.1002/jnr.20810
|
[19] | Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F (2008) The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurons. J Physiol 586: 5101–5118. doi: 10.1113/jphysiol.2008.159384
|
[20] | Ooi L, Gigout S, Pettinger L, Gamper N (2013) Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species. J Neurosci 33: 6041–6046. doi: 10.1523/jneurosci.4275-12.2013
|
[21] | Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8: 451–465. doi: 10.1038/nrn2148
|
[22] | Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8: 1263–1268. doi: 10.1038/nn1525
|
[23] | Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54: 85–94. doi: 10.1016/j.neures.2005.10.009
|
[24] | Armstrong-James M, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurophysiol 68: 1345–1358.
|
[25] | Ikezoe K, Tamura H, Kimura F, Fujita I (2012) Decorrelation of sensory-evoked neuronal responses in rat barrel cortex during postnatal development. Neurosci Res 73: 312–20. doi: 10.1016/j.neures.2012.05.009
|
[26] | Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302–306. doi: 10.1038/35018568
|
[27] | Hirata A, Castro-Alamancos MA (2008) Cortical transformation of wide-field (multiwhisker) sensory responses. J Neurophysiol 100: 358–370. doi: 10.1152/jn.90538.2008
|
[28] | Viaene AN, Petrof I, Sherman SM (2011) Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci U S A 108: 18156–18161. doi: 10.1073/pnas.1114828108
|
[29] | Erchova IA, Lebedev MA, Diamond ME (2002) Somatosensory cortical neuronal population activity across states of anaesthesia. Eur J Neurosci 15: 744–752. doi: 10.1046/j.0953-816x.2002.01898.x
|
[30] | Timofeev I, Chauvette S (2011) Thalamocortical oscillations: local control of EEG slow waves. Curr Top Med Chem 11: 2457–2471. doi: 10.2174/156802611797470376
|
[31] | Steriade M, Nu?ez A, Amzica F (1993) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13: 3252–3265.
|
[32] | Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101: 243–276. doi: 10.1016/s0306-4522(00)00353-5
|
[33] | Ushimaru M, Ueta Y, Kawaguchi Y (2012) Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization. J Neurosci 32: 1730–1746. doi: 10.1523/jneurosci.4883-11.2012
|
[34] | Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100: 13638–13643. doi: 10.1073/pnas.2235811100
|
[35] | Sachdev RNS, Ebner FF, Wilson CJ (2004) Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J Neurophysiol 92: 3511–3521. doi: 10.1152/jn.00347.2004
|
[36] | Civillico EF, Contreras D (2012) Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context. Front Syst Neurosci 6: 25. doi: 10.3389/fnsys.2012.00025
|
[37] | Hasenstaub A, Sachdev RNS, McCormick DA (2007) State changes rapidly modulate cortical neuronal responsiveness. J Neurosci 27: 9607–9622. doi: 10.1523/jneurosci.2184-07.2007
|
[38] | Kuki T, Ohshiro T, Ito S, Ji ZG, Fukazawa Y, et al. (2013) Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat. Neurosci Res 75: 35–45. doi: 10.1016/j.neures.2012.10.007
|
[39] | Watson BO, MacLean JN, Yuste R (2008) UP states protect ongoing cortical activity from thalamic inputs. PLoS One 3: e3971. doi: 10.1371/journal.pone.0003971
|
[40] | Yang X, Hyder F, Shulman RG (1996) Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci U S A 93: 475–478. doi: 10.1073/pnas.93.1.475
|
[41] | Sanganahalli BG, Herman P, Hyder F (2008) Frequency-dependent tactile responses in rat brain measured by functional MRI. NMR Biomed 21: 410–416. doi: 10.1002/nbm.1259
|
[42] | Yu X, Wang S, Chen DY, Dodd S, Goloshevsky A, et al. (2010) 3D mapping of somatotopic reorganization with small animal functional MRI. Neuroimage 49: 1667–1676. doi: 10.1016/j.neuroimage.2009.09.021
|
[43] | Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357: 1003–1037. doi: 10.1098/rstb.2002.1114
|
[44] | Martin C, Martindale J, Berwick J, Mayhew J (2006) Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32: 33–48. doi: 10.1016/j.neuroimage.2006.02.021
|
[45] | Goense J, Merkle H, Logothetis K (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 76: 629–639. doi: 10.1016/j.neuron.2012.09.019
|
[46] | Sumiyoshi A, Suzuki H, Ogawa T, Riera JJ, Shimokawa H, et al. (2012) Coupling between gamma oscillation and fMRI signal in the rat somatosensory cortex: Its dependence on systemic physiological parameters. Neuroimage 60: 738–746. doi: 10.1016/j.neuroimage.2011.12.082
|
[47] | Desai M, Kahn I, Knoblich U, Bernstein J, Atallah H, et al. (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105: 1393–1405. doi: 10.1152/jn.00828.2010
|
[48] | Kahn I, Desai M, Knoblich U, Bernstein J, Henninger M, et al. (2011) Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 31: 15086–15091. doi: 10.1523/jneurosci.0007-11.2011
|
[49] | Abe Y, Sekino M, Terazono Y, Ohsaki H, Fukazawa Y, et al. (2012) Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal formation in rats. Neurosci Res 74: 248–755. doi: 10.1016/j.neures.2012.08.007
|
[50] | Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41: 798–820.
|
[51] | Knutsen PM, Piet M, Ahissar E (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26: 8451–8464. doi: 10.1523/jneurosci.1516-06.2006
|
[52] | O'Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, et al. (2010) Vibrissa-based object localization in head-fixed mice. J Neurosci 30: 1947–1967. doi: 10.1523/jneurosci.3762-09.2010
|
[53] | Petreanu L, Gutnisky DA, Huber D, Xu NL, O'Connor DH, et al. (2012) Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489: 299–303. doi: 10.1038/nature11321
|
[54] | Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat's striate cortex. J Physiol 148: 574–591 (republicated in J Physiol 587: 2722–2732, 2009)..
|
[55] | Nicholls JG, Martin AR, Wallace BG, Fuchs PA (2001) From Neuron to Brain Fourth Edition. Sunderland: Sinauer Associates, Inc.
|
[56] | Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T (2000) Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 38: 231–236. doi: 10.1016/s0168-0102(00)00176-0
|