In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.
da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3: 694–704. doi: 10.1038/nrn918
[3]
Neukirchen D, Bradke F (2011) Neuronal polarization and the cytoskeleton. Semin Cell Dev Biol 22: 825–833. doi: 10.1016/j.semcdb.2011.08.007
Bradke F, Dotti CG (2000) Changes in membrane trafficking and actin dynamics during axon formation in cultured hippocampal neurons. Microsc Res Tech 48: 3–11. doi: 10.1002/(sici)1097-0029(20000101)48:1<3::aid-jemt2>3.0.co;2-o
[6]
Yadav S, Linstedt AD (2011) Golgi positioning. Cold Spring Harb Perspect Biol 3.
[7]
Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, et al. (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48: 757–771. doi: 10.1016/j.neuron.2005.11.005
[8]
Hoogenraad CC, Bradke F (2009) Control of neuronal polarity and plasticity–a renaissance for microtubules? Trends Cell Biol 19: 669–676. doi: 10.1016/j.tcb.2009.08.006
[9]
Witte H, Bradke F (2008) The role of the cytoskeleton during neuronal polarization. Curr Opin Neurobiol 18: 479–487. doi: 10.1016/j.conb.2008.09.019
[10]
Stiess M, Bradke F (2011) Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 71: 430–444. doi: 10.1002/dneu.20849
[11]
Egea G, Lazaro-Dieguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18: 168–178. doi: 10.1016/j.ceb.2006.02.007
[12]
Lazaro-Dieguez F, Jimenez N, Barth H, Koster AJ, Renau-Piqueras J, et al. (2006) Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton 63: 778–791. doi: 10.1002/cm.20161
[13]
Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 283: 1931–1934. doi: 10.1126/science.283.5409.1931
Camera P, da Silva JS, Griffiths G, Giuffrida MG, Ferrara L, et al. (2003) Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol 5: 1071–1078. doi: 10.1038/ncb1064
[16]
Matas OB, Martinez-Menarguez JA, Egea G (2004) Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes. Traffic 5: 838–846. doi: 10.1111/j.1600-0854.2004.00225.x
[17]
Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, et al. (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393: 809–812.
[18]
Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, et al. (1998) PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. Embo J 17: 6527–6540. doi: 10.1093/emboj/17.22.6527
[19]
Flynn KC, Hellal F, Neukirchen D, Jacob S, Tahirovic S, et al. (2012) ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76: 1091–1107. doi: 10.1016/j.neuron.2012.09.038
[20]
Garvalov BK, Flynn KC, Neukirchen D, Meyn L, Teusch N, et al. (2007) Cdc42 regulates cofilin during the establishment of neuronal polarity. J Neurosci 27: 13117–13129. doi: 10.1523/jneurosci.3322-07.2007
[21]
Rosso S, Bollati F, Bisbal M, Peretti D, Sumi T, et al. (2004) LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell 15: 3433–3449. doi: 10.1091/mbc.e03-05-0328
[22]
Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1: 253–259.
[23]
Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, et al. (2000) Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275: 3577–3582. doi: 10.1074/jbc.275.5.3577
[24]
Witke W, Sutherland JD, Sharpe A, Arai M, Kwiatkowski DJ (2001) Profilin I is essential for cell survival and cell division in early mouse development. Proc Natl Acad Sci U S A 98: 3832–3836. doi: 10.1073/pnas.051515498
[25]
Madaule P, Furuyashiki T, Reid T, Ishizaki T, Watanabe G, et al. (1995) A novel partner for the GTP-bound forms of rho and rac. FEBS Lett 377: 243–248. doi: 10.1016/0014-5793(95)01351-2
[26]
Madaule P, Eda M, Watanabe N, Fujisawa K, Matsuoka T, et al. (1998) Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394: 491–494. doi: 10.1038/28873
[27]
Di Cunto F, Calautti E, Hsiao J, Ong L, Topley G, et al. (1998) Citron rho-interacting kinase, a novel tissue-specific ser/thr kinase encompassing the Rho-Rac-binding protein Citron. J Biol Chem 273: 29706–29711. doi: 10.1074/jbc.273.45.29706
[28]
Furuyashiki T, Fujisawa K, Fujita A, Madaule P, Uchino S, et al. (1999) Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J Neurosci 19: 109–118. doi: 10.1016/s0168-0102(98)82000-2
[29]
Di Cunto F, Ferrara L, Curtetti R, Imarisio S, Guazzone S, et al. (2003) Role of citron kinase in dendritic morphogenesis of cortical neurons. Brain Res Bull 60: 319–327. doi: 10.1016/s0361-9230(03)00058-3
[30]
Eki T, Abe M, Naitou M, Sasanuma SI, Nohata J, et al. (1997) Cloning and characterization of novel gene, DCRR1, expressed from Down’s syndrome critical region of human chromosome 21q22.2. DNA Seq 7: 153–164. doi: 10.3109/10425179709034031
[31]
Tsukahara F, Hattori M, Muraki T, Sakaki Y (1996) Identification and cloning of a novel cDNA belonging to tetratricopeptide repeat gene family from Down syndrome-critical region 21q22.2. J Biochem 120: 820–827. doi: 10.1093/oxfordjournals.jbchem.a021485
[32]
Berto G, Camera P, Fusco C, Imarisio S, Ambrogio C, et al. (2007) The Down syndrome critical region protein TTC3 inhibits neuronal differentiation via RhoA and Citron kinase. J Cell Sci 120: 1859–1867. doi: 10.1242/jcs.000703
[33]
Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, et al. (2009) The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell 17: 800–810. doi: 10.1016/j.devcel.2009.09.007
[34]
Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Perez-Jurado LA, et al. (2011) Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics 12: 229. doi: 10.1186/1471-2164-12-229
[35]
Banker G, Goslin K (1988) Developments in neuronal cell culture. Nature 336: 185–186. doi: 10.1038/336185a0
[36]
Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A, et al. (2000) Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron 28: 115–127. doi: 10.1016/s0896-6273(00)00090-8
[37]
de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, et al. (2005) Centrosome localization determines neuronal polarity. Nature 436: 704–708. doi: 10.1038/nature03811
[38]
Holcomb PS, Deerinck TJ, Ellisman MH, Spirou GA (2013) Construction of a polarized neuron. J Physiol 591: 3145–3150. doi: 10.1113/jphysiol.2012.248542
[39]
Yin DM, Huang YH, Zhu YB, Wang Y (2008) Both the establishment and maintenance of neuronal polarity require the activity of protein kinase D in the Golgi apparatus. J Neurosci 28: 8832–8843. doi: 10.1523/jneurosci.1291-08.2008
[40]
Bard F, Mazelin L, Pechoux-Longin C, Malhotra V, Jurdic P (2003) Src regulates Golgi structure and KDEL receptor-dependent retrograde transport to the endoplasmic reticulum. J Biol Chem 278: 46601–46606. doi: 10.1074/jbc.m302221200
[41]
Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, et al. (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162: 1267–1279. doi: 10.1083/jcb.200304021
[42]
Belichenko NP, Belichenko PV, Kleschevnikov AM, Salehi A, Reeves RH, et al. (2009) The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J Neurosci 29: 5938–5948. doi: 10.1523/jneurosci.1547-09.2009
[43]
Kleschevnikov AM, Belichenko PV, Faizi M, Jacobs LF, Htun K, et al. (2012) Deficits in Cognition and Synaptic Plasticity in a Mouse Model of Down Syndrome Ameliorated by GABAB Receptor Antagonists. J Neurosci 32: 9217–9227. doi: 10.1523/jneurosci.1673-12.2012
[44]
Siarey RJ, Villar AJ, Epstein CJ, Galdzicki Z (2005) Abnormal synaptic plasticity in the Ts1Cje segmental trisomy 16 mouse model of Down syndrome. Neuropharmacology 49: 122–128. doi: 10.1016/j.neuropharm.2005.02.012
[45]
Becker L, Mito T, Takashima S, Onodera K (1991) Growth and development of the brain in Down syndrome. Prog Clin Biol Res 373: 133–152.
[46]
Becker LE, Armstrong DL, Chan F (1986) Dendritic atrophy in children with Down’s syndrome. Ann Neurol 20: 520–526. doi: 10.1002/ana.410200413
[47]
Martinez de Lagran M, Benavides-Piccione R, Ballesteros-Yanez I, Calvo M, Morales M, et al. (2012) Dyrk1A influences neuronal morphogenesis through regulation of cytoskeletal dynamics in mammalian cortical neurons. Cereb Cortex 22: 2867–2877. doi: 10.1093/cercor/bhr362
[48]
Dierssen M, de Lagran MM (2006) DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A): a gene with dosage effect during development and neurogenesis. ScientificWorldJournal 6: 1911–1922. doi: 10.1100/tsw.2006.319
[49]
Rendon WO, Martinez-Alonso E, Tomas M, Martinez-Martinez N, Martinez-Menarguez JA (2013) Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 139: 671–684. doi: 10.1007/s00418-012-1059-4
[50]
Farg MA, Soo KY, Warraich ST, Sundaramoorthy V, Blair IP, et al. (2013) Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22: 717–728. doi: 10.1093/hmg/dds479
[51]
Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246: 21–30. doi: 10.1016/j.jns.2006.01.019
[52]
Bisel B, Calamai M, Vanzi F, Pavone FS (2013) Decoupling polarization of the Golgi apparatus and GM1 in the plasma membrane. PLoS One 8: e80446. doi: 10.1371/journal.pone.0080446
[53]
Bassi ZI, Verbrugghe KJ, Capalbo L, Gregory S, Montembault E, et al. (2011) Sticky/Citron kinase maintains proper RhoA localization at the cleavage site during cytokinesis. J Cell Biol 195: 595–603. doi: 10.1083/jcb.201105136
[54]
Gai M, Camera P, Dema A, Bianchi F, Berto G, et al. (2011) Citron kinase controls abscission through RhoA and anillin. Mol Biol Cell 22: 3768–3778. doi: 10.1091/mbc.e10-12-0952
[55]
Camera P, Schubert V, Pellegrino M, Berto G, Vercelli A, et al. (2008) The RhoA-associated protein Citron-N controls dendritic spine maintenance by interacting with spine-associated Golgi compartments. EMBO Rep 9: 384–392. doi: 10.1038/embor.2008.21
[56]
Repetto D, Camera P, Melani R, Morello N, Russo I, et al. (2014) p140Cap Regulates Memory and Synaptic Plasticity through Src-Mediated and Citron-N-Mediated Actin Reorganization. J Neurosci 34: 1542–1553. doi: 10.1523/jneurosci.2341-13.2014
[57]
Bassi ZI, Audusseau M, Riparbelli MG, Callaini G, D’Avino PP (2013) Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Natl Acad Sci U S A 110: 9782–9787. doi: 10.1073/pnas.1301328110
[58]
Burkhardt JK (1998) The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim Biophys Acta 1404: 113–126. doi: 10.1016/s0167-4889(98)00052-4
[59]
Takata M, Tanaka H, Kimura M, Nagahara Y, Tanaka K, et al.. (2013) Fasudil, a rho kinase inhibitor, limits motor neuron loss in experimental amyotrophic lateral sclerosis models. Br J Pharmacol.