Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific ‘signature’ amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific ‘signature’ amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared.
References
[1]
Knowles NJ (2013) Picornavirus web page. Available: www.picornaviridae.com. Accessed 2014 Mar 12.
[2]
Pallansch MA, Roos RP (2007) Enteroviruses: Polioviruses, coxsackieviruses, echoviruses and newer enteroviruses. In: Knipe DM, Howley PM, editors. Fields Virology. Philadelphia, USA: Lippincot Williams & Wilkins. pp. 839–840–894.
[3]
Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999) Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73: 1941–1948.
[4]
Oberste MS, Maher K, Flemister MR, Marchetti G, Kilpatrick DR, et al. (2000) Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38: 1170–1174.
[5]
Brown BA, Maher K, Flemister MR, Naraghi-Arani P, Uddin M, et al. (2009) Resolving ambiguities in genetic typing of human enterovirus species C clinical isolates and identification of enterovirus 96, 99 and 102. J Gen Virol 90: 1713–1723 10.1099/vir.0.008540-0; 10.1099/vir.0.008540-0.
[6]
Smura T, Savolainen-Kopra C, Roivainen M (2011) Evolution of newly described enteroviruses. Future Virology 6: 109–131 10.2217/FVL.10.62. doi: 10.2217/fvl.10.62
[7]
Jiang P, Faase JA, Toyoda H, Paul A, Wimmer E, et al. (2007) Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. Proc Natl Acad Sci U S A 104: 9457–9462 10.1073/pnas.0700451104.
[8]
Smura T, Blomqvist S, Hovi T, Roivainen M (2009) The complete genome sequences for a novel enterovirus type, enterovirus 96, reflect multiple recombinations. Arch Virol 154: 1157–1161 10.1007/s00705-009-0418-5; 10.1007/s00705-009-0418-5.
[9]
Lennette EH, Fox VL, Schmidt NJ, Culver JO (1958) The coe virus: An apparently new virus recovered from patients with mild respiratory disease. Am J Hyg 68: 272–287.
[10]
Xiang Z, Gonzalez R, Wang Z, Ren L, Xiao Y, et al. (2012) Coxsackievirus A21, enterovirus 68, and acute respiratory tract infection, china. Emerg Infect Dis 18: 821–824 10.3201/eid1805.111376; 10.3201/eid1805.111376. doi: 10.3201/eid1805.111376
[11]
Smura T, Blomqvist S, Paananen A, Vuorinen T, Sobotova Z, et al. (2007) Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5′-untranslated region evolution. J Gen Virol 88: 2520–2526 10.1099/vir.0.82866-0.
[12]
Xu A, Tao Z, Wang H, Zhang Y, Song L, et al. (2011) The complete genome analysis of two enterovirus 96 strains isolated in china in 2005 and 2009. Virus Genes 42: 323–330 10.1007/s11262-011-0584-x; 10.1007/s11262-011-0584-x.
[13]
Bingjun T, Yoshida H, Yan W, Lin L, Tsuji T, et al. (2008) Molecular typing and epidemiology of non-polio enteroviruses isolated from yunnan province, the people's republic of china. J Med Virol 80: 670–679 10.1002/jmv.21122; 10.1002/jmv.21122.
[14]
Apostol LN, Suzuki A, Bautista A, Galang H, Paladin FJ, et al. (2012) Detection of non-polio enteroviruses from 17 years of virological surveillance of acute flaccid paralysis in the philippines. J Med Virol 84: 624–631 10.1002/jmv.23242; 10.1002/jmv.23242.
[15]
Apostol LN, Imagawa T, Suzuki A, Masago Y, Lupisan S, et al. (2012) Genetic diversity and molecular characterization of enteroviruses from sewage-polluted urban and rural rivers in the philippines. Virus Genes 45: 207–217 10.1007/s11262-012-0776-z.
[16]
Bessaud M, Pillet S, Ibrahim W, Joffret ML, Pozzetto B, et al. (2012) Molecular characterization of human enteroviruses in the central african republic: Uncovering wide diversity and identification of a new human enterovirus A71 genogroup. J Clin Microbiol 50: 1650–1658 10.1128/JCM.06657-11; 10.1128/JCM.06657-11.
[17]
Sadeuh-Mba SA, Bessaud M, Massenet D, Joffret ML, Endegue MC, et al. (2013) High frequency and diversity of species C enteroviruses in cameroon and neighboring countries. J Clin Microbiol 51: 759–770 10.1128/JCM.02119-12; 10.1128/JCM.02119-12.
[18]
Rakoto-Andrianarivelo M, Rousset D, Razafindratsimandresy R, Chevaliez S, Guillot S, et al. (2005) High frequency of human enterovirus species C circulation in madagascar. J Clin Microbiol 43: 242–249 10.1128/JCM.43.1.242-249.2005.
[19]
Oberste MS, Feeroz MM, Maher K, Nix WA, Engel GA, et al. (2013) Characterizing the picornavirus landscape among synanthropic nonhuman primates in bangladesh, 2007 to 2008. J Virol 87: 558–571 10.1128/JVI.00837-12; 10.1128/JVI.00837-12.
[20]
Cabrerizo M, Rabella N, Torner N, Castellanos T, Bustillo I, et al. (2012) Molecular identification of an enterovirus 99 strain in spain. Arch Virol 157: 551–554 10.1007/s00705-011-1207-5; 10.1007/s00705-011-1207-5.
[21]
Mirkovic RR, Schmidt NJ, Yin-Murphy M, Melnick JL (1974) Enterovirus etiology of the 1970 singapore epidemic of acute conjunctivitis. Intervirology 4: 119–127.
[22]
World Health Organization (WHO) (2003) Guidelines for environmental surveillance of poliovirus circulation. Dept of Vaccines and Biologicals WHO webpage. Available: http://whqlibdoc.who.int/hq/2003/WHO_V&B?_03.03.pdf, Accessed 2014 Mar 12.
[23]
Blomqvist S, Paananen A, Savolainen-Kopra C, Hovi T, Roivainen M (2008) Eight years of experience with molecular identification of human enteroviruses. J Clin Microbiol 46: 2410–2413 10.1128/JCM.00313-08; 10.1128/JCM.00313-08.
[24]
Oberste MS, Nix WA, Maher K, Pallansch MA (2003) Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol 26: 375–377. doi: 10.1016/s1386-6532(03)00004-0
[25]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 10.1093/molbev/msr121; 10.1093/molbev/msr121.
[26]
Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973 10.1093/molbev/mss075; 10.1093/molbev/mss075.
[27]
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526.
[28]
Tavare S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM, editor. Lectures on Mathematics in the Life Sciences. Providence: Amer. Math. Soc. pp. 57–58–86.
Rambaut A. (2007) Tracer v1.4 available from http://Beast.bio.ed.ac.uk/tracer.
[31]
Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88 10.1371/journal.pbio.0040088.
[32]
Kumar S, Skjaeveland A, Orr RJ, Enger P, Ruden T, et al. (2009) AIR: A batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinformatics 10: 357–2105-10-357 10.1186/1471-2105-10-357; 10.1186/1471-2105-10-357.
[33]
Kosakovsky Pond SL, Frost SD (2005) Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22: 1208–1222 10.1093/molbev/msi105.
[34]
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, et al. (2013) FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30: 1196–1205 10.1093/molbev/mst030; 10.1093/molbev/mst030.
[35]
Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26: 2455–2457 10.1093/bioinformatics/btq429; 10.1093/bioinformatics/btq429.
[36]
McDonald JH, Kreitman M (1991) Adaptive protein evolution at the adh locus in drosophila. Nature 351: 652–654 10.1038/351652a0.
[37]
Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452 10.1093/bioinformatics/btp187; 10.1093/bioinformatics/btp187.
[38]
Egea R, Casillas S, Barbadilla A (2008) Standard and generalized McDonald-kreitman test: A website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res 36: W157–62 10.1093/nar/gkn337; 10.1093/nar/gkn337.
[39]
Bhatt S, Katzourakis A, Pybus OG (2010) Detecting natural selection in RNA virus populations using sequence summary statistics. Infect Genet Evol 10: 421–430 10.1016/j.meegid.2009.06.001; 10.1016/j.meegid.2009.06.001.
[40]
Bhatt S, Holmes EC, Pybus OG (2011) The genomic rate of molecular adaptation of the human influenza A virus. Mol Biol Evol 28: 2443–2451 10.1093/molbev/msr044; 10.1093/molbev/msr044.
[41]
Williamson S (2003) Adaptation in the env gene of HIV-1 and evolutionary theories of disease progression. Mol Biol Evol 20: 1318–1325 10.1093/molbev/msg144.
[42]
Xiao C, Bator-Kelly CM, Rieder E, Chipman PR, Craig A, et al. (2005) The crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 13: 1019–1033 10.1016/j.str.2005.04.011.
[43]
[Anonymous] Jmol: An open-source java viewer for chemical structures in 3D. http://Www.jmol.org.
[44]
Brown B, Oberste MS, Maher K, Pallansch MA (2003) Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77: 8973–8984. doi: 10.1128/jvi.77.16.8973-8984.2003
[45]
Lukashev AN, Drexler JF, Kotova VO, Amjaga EN, Reznik VI, et al. (2012) Novel serotypes 105 and 116 are members of distinct subgroups of human enterovirus C. J Gen Virol 93: 2357–2362 10.1099/vir.0.043216-0; 10.1099/vir.0.043216-0.
[46]
Bessaud M, Joffret ML, Holmblat B, Razafindratsimandresy R, Delpeyroux F (2011) Genetic relationship between cocirculating human enteroviruses species C. PLoS One 6: e24823 10.1371/journal.pone.0024823; 10.1371/journal.pone.0024823.
[47]
Samoilovich E, Roivainen M, Titov LP, Hovi T (2003) Serotype-specific mucosal immune response and subsequent poliovirus replication in vaccinated children. J Med Virol 71: 274–280 10.1002/jmv.10480.
[48]
Khetsuriani N, Lamonte-Fowlkes A, Oberst S, Pallansch MA (2006) Centers for Disease Control and Prevention (2006) Enterovirus surveillance—united states, 1970-2005. MMWR Surveill Summ 55: 1–20.
[49]
Rakoto-Andrianarivelo M, Guillot S, Iber J, Balanant J, Blondel B, et al. (2007) Co-circulation and evolution of polioviruses and species C enteroviruses in a district of madagascar. PLoS Pathog 3: e191 10.1371/journal.ppat.0030191.
[50]
Arita M, Zhu SL, Yoshida H, Yoneyama T, Miyamura T, et al. (2005) A sabin 3-derived poliovirus recombinant contained a sequence homologous with indigenous human enterovirus species C in the viral polymerase coding region. J Virol 79: 12650–12657 10.1128/JVI.79.20.12650-12657.2005.
[51]
Jegouic S, Joffret ML, Blanchard C, Riquet FB, Perret C, et al. (2009) Recombination between polioviruses and co-circulating coxsackie A viruses: Role in the emergence of pathogenic vaccine-derived polioviruses. PLoS Pathog 5: e1000412 10.1371/journal.ppat.1000412; 10.1371/journal.ppat.1000412.
[52]
McWilliam Leitch EC, Bendig J, Cabrerizo M, Cardosa J, Hyypia T, et al. (2009) Transmission networks and population turnover of echovirus 30. J Virol 83: 2109–2118 10.1128/JVI.02109-08; 10.1128/JVI.02109-08.
[53]
McWilliam Leitch EC, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, et al. (2010) Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus echovirus types 9, 11, and 30. J Virol 84: 9292–9300 10.1128/JVI.00783-10; 10.1128/JVI.00783-10.
[54]
McWilliam Leitch EC, Cabrerizo M, Cardosa J, Harvala H, Ivanova OE, et al. (2012) The association of recombination events in the founding and emergence of subgenogroup evolutionary lineages of human enterovirus 71. J Virol 86: 2676–2685 10.1128/JVI.06065-11; 10.1128/JVI.06065-11.
[55]
Gullberg M, Tolf C, Jonsson N, Mulders MN, Savolainen-Kopra C, et al. (2010) Characterization of a putative ancestor of coxsackievirus B5. J Virol 84: 9695–9708 10.1128/JVI.00071-10; 10.1128/JVI.00071-10.
[56]
Tee KK, Lam TT, Chan YF, Bible JM, Kamarulzaman A, et al. (2010) Evolutionary genetics of human enterovirus 71: Origin, population dynamics, natural selection, and seasonal periodicity of the VP1 gene. J Virol 84: 3339–3350 10.1128/JVI.01019-09; 10.1128/JVI.01019-09.
[57]
Smura T, Kakkola L, Blomqvist S, Klemola P, Parsons A, et al. (2013) Molecular evolution and epidemiology of echovirus 6 in finland. Infect Genet Evol 16: 234–247 10.1016/j.meegid.2013.02.011; 10.1016/j.meegid.2013.02.011.
[58]
Chu PY, Lu PL, Tsai YL, Hsi E, Yao CY, et al. (2011) Spatiotemporal phylogenetic analysis and molecular characterization of coxsackievirus A4. Infect Genet Evol 11: 1426–1435 10.1016/j.meegid.2011.05.010; 10.1016/j.meegid.2011.05.010.
[59]
Chu PY, Ke GM, Chen YS, Lu PL, Chen HL, et al. (2010) Molecular epidemiology of coxsackievirus B3. Infect Genet Evol 10: 777–784 10.1016/j.meegid.2010.04.004; 10.1016/j.meegid.2010.04.004.
[60]
Savolainen-Kopra C, Paananen A, Blomqvist S, Klemola P, Simonen ML, et al. (2011) A large finnish echovirus 30 outbreak was preceded by silent circulation of the same genotype. Virus Genes 42: 28–36 10.1007/s11262-010-0536-x; 10.1007/s11262-010-0536-x.
[61]
Henquell C, Mirand A, Richter J, Schuffenecker I, Bottiger B, et al.. (2013) Phylogenetic patterns of human coxsackievirus B5 arise from population dynamics between two genogroups and reveal evolutionary factors of molecular adaptation and transmission. J Virol. 10.1128/JVI.02075-13.
[62]
Bailly JL, Mirand A, Henquell C, Archimbaud C, Chambon M, et al. (2011) Repeated genomic transfers from echovirus 30 to echovirus 6 lineages indicate co-divergence between co-circulating populations of the two human enterovirus serotypes. Infect Genet Evol 11: 276–289 10.1016/j.meegid.2010.06.019; 10.1016/j.meegid.2010.06.019.
[63]
Cabrerizo M, Trallero G, Simmonds P (2013) Recombination and evolutionary dynamics of human echovirus 6. J Med Virol. 10.1002/jmv.23741; 10.1002/jmv.23741.
[64]
Chu PY, Ke GM, Chang CH, Lin JC, Sun CY, et al. (2009) Molecular epidemiology of coxsackie A type 24 variant in taiwan, 2000–2007. J Clin Virol 45: 285–291 10.1016/j.jcv.2009.04.013; 10.1016/j.jcv.2009.04.013.
[65]
Bull RA, Eden JS, Rawlinson WD, White PA (2010) Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLoS Pathog 6: e1000831 10.1371/journal.ppat.1000831; 10.1371/journal.ppat.1000831.
[66]
Jorba J, Campagnoli R, De L, Kew O (2008) Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J Virol 82: 4429–4440 10.1128/JVI.02354-07; 10.1128/JVI.02354-07.
[67]
Hovi T, Savolainen-Kopra C, Smura T, Blomqvist S, Al-Hello H, et al. (2013) Evolution of type 2 vaccine derived poliovirus lineages. evidence for codon-specific positive selection at three distinct locations on capsid wall. PLoS One 8: e66836 10.1371/journal.pone.0066836; 10.1371/journal.pone.0066836.
[68]
Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229: 1358–1365. doi: 10.1126/science.2994218
[69]
Bailly JL, Mirand A, Henquell C, Archimbaud C, Chambon M, et al. (2009) Phylogeography of circulating populations of human echovirus 30 over 50 years: Nucleotide polymorphism and signature of purifying selection in the VP1 capsid protein gene. Infect Genet Evol 9: 699–708 10.1016/j.meegid.2008.04.009; 10.1016/j.meegid.2008.04.009.