全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Identification of Two Tyrosine Residues Required for the Intramolecular Mechanism Implicated in GIT1 Activation

DOI: 10.1371/journal.pone.0093199

Full-Text   Cite this paper   Add to My Lib

Abstract:

GIT1 is an ArfGAP and scaffolding protein regulating cell adhesion and migration. The multidomain structure of GIT1 allows the interaction with several partners. Binding of GIT1 to some of its partners requires activation of the GIT1 polypeptide. Our previous studies indicated that binding of paxillin to GIT1 is enhanced by release of an intramolecular interaction between the amino-terminal and carboxy-terminal portions that keeps the protein in a binding-incompetent state. Here we have addressed the mechanism mediating this intramolecular inhibitory mechanism by testing the effects of the mutation of several formerly identified GIT1 phosphorylation sites on the binding to paxillin. We have identified two tyrosines at positions 246 and 293 of the human GIT1 polypeptide that are needed to keep the protein in the inactive conformation. Interestingly, mutation of these residues to phenylalanine did not affect binding to paxillin, while mutation to either alanine or glutamic acid enhanced binding to paxillin, without affecting the constitutive binding to the Rac/Cdc42 exchange factor βPIX. The involvement of the two tyrosine residues in the intramolecular interaction was supported by reconstitution experiments showing that these residues are important for the binding between the amino-terminal fragment and carboxy-terminal portions of GIT1. Either GIT1 or GIT1-N tyrosine phosphorylation by Src and pervanadate treatment to inhibit protein tyrosine phosphatases did not affect the intramolecular binding between the amino- and carboxy-terminal fragments, nor the binding of GIT1 to paxillin. Mutations increasing the binding of GIT1 to paxillin positively affected cell motility, measured both by transwell migration and wound healing assays. Altogether these results show that tyrosines 246 and 293 of GIT1 are required for the intramolecular inhibitory mechanism that prevents the binding of GIT1 to paxillin. The data also suggest that tyrosine phosphorylation may not be sufficient to release the intramolecular interaction that keeps GIT1 in the inactive conformation.

References

[1]  Frank SR, Hansen SH (2008) The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin Cell Dev Biol 19: 234–44. doi: 10.1016/j.semcdb.2008.01.002
[2]  Hoefen RJ, Berk BC (2006) The multifunctional GIT family of proteins. J Cell Sci 119: 1469–1475. doi: 10.1242/jcs.02925
[3]  Sabe H, Onodera Y, Mazaki Y, Hashimoto S (2006) ArfGAP family proteins in cell adhesion, migration and tumor invasion. Curr Opin Cell Biol 18: 558–564. doi: 10.1016/j.ceb.2006.08.002
[4]  Vitale N, Patton WA, Moss J, Vaughan M, Lefkowitz RJ, Premont RT (2000) GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphatestimulated GTPase-activating proteins for ARF6. J Biol Chem 275: 13901–13906. doi: 10.1074/jbc.275.18.13901
[5]  D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7: 347–358. doi: 10.1038/nrm1910
[6]  Shih JL, Reck-Peterson SL, Newitt R, Mooseker MS, Aebersold R, Herskowitz I (2005) Cell polarity protein Spa2P associates with proteins involved in actin function in Saccharomyces cerevisiae. Mol Biol Cell 16: 4595–4608. doi: 10.1091/mbc.e05-02-0108
[7]  Bagrodia S, Bailey D, Lenard Z, Hart M, Guan JL, Premont RT, Taylor SJ, Cerione RA (1999) A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J Biol Chem 274: 22393–22400. doi: 10.1074/jbc.274.32.22393
[8]  Di Cesare A, Paris S, Albertinazzi C, Dariozzi S, Andersen J, Mann M, Longhi R, de Curtis I (2000) p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nat Cell Biol 2: 521–530. doi: 10.1038/35019561
[9]  Premont RT, Claing A, Vitale N, Perry SJ, Lefkowitz RJ (2000) The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J Biol Chem 275: 22373–22380. doi: 10.1074/jbc.275.29.22373
[10]  Zhao ZS, Manser E, Loo TH, Lim L (2000) Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol 20: 6354–6363. doi: 10.1128/mcb.20.17.6354-6363.2000
[11]  Kim S, Lee SH, Park D (2001) Leucine zipper-mediated homodimerization of the p21-activated kinase-interacting factor, beta Pix. Implication for a role in cytoskeletal reorganization. J Biol Chem 276: 10581–10584. doi: 10.1074/jbc.c000806200
[12]  Paris S, Longhi R, Santambrogio P, de Curtis I (2003) Leucine-zipper-mediated homo- and hetero-dimerization of GIT family p95-ARF GTPase-activating protein, PIX-, paxillin-interacting proteins 1 and 2. Biochem J 372: 391–398. doi: 10.1042/bj20030047
[13]  Premont RT, Perry SJ, Schmalzigaug R, Roseman JT, Xing Y, Claing A (2004) The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPaseactivating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cell Signal 16: 1001–1011. doi: 10.1016/j.cellsig.2004.02.002
[14]  Schmalzigaug R, Garron ML, Roseman JT, Xing Y, Davidson CE, Arold ST, Premont RT (2007) GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin. Cell Signal 19: 1733–1744. doi: 10.1016/j.cellsig.2007.03.010
[15]  Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6: 154–161. doi: 10.1038/ncb1094
[16]  Matafora V, Paris S, Dariozzi S, de Curtis I (2001) Molecular mechanisms regulating the subcellular localization of p95-APP1 between the endosomal recycling compartment and sites of actin organization at the cell surface. J Cell Sci 114: 4509–4520.
[17]  West KA, Zhang H, Brown MC, Nikolopoulos SN, Riedy MC, Horwitz AF, Turner CE (2001) The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J Cell Biol 154: 161–176. doi: 10.1083/jcb.200101039
[18]  Brown MC, West KA, Turner CE (2002) Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 13: 1550–1565. doi: 10.1091/mbc.02-02-0015
[19]  Manabe R, Kovalenko M, Webb DJ, Horwitz AR (2002) GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J Cell Sci 115: 1497–1510.
[20]  Lamorte L, Rodrigues S, Sangwan V, Turner CE, Park M (2003) Crk associates with a multimolecular Paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Mol Biol Cell 14: 2818–2831. doi: 10.1091/mbc.e02-08-0497
[21]  Botrugno OA, Paris S, Za L, Gualdoni S, Cattaneo A, Bachi A, de Curtis I (2006) Characterization of the endogenous GIT1-betaPIX complex, and identification of its association to membranes. Eur J Cell Biol 85: 35–46. doi: 10.1016/j.ejcb.2005.09.018
[22]  Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS (1999) Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J Cell Biol 145: 851–863. doi: 10.1083/jcb.145.4.851
[23]  Totaro A, Paris S, Asperti C, de Curtis I (2007) Identification of an intramolecular interaction important for the regulation of GIT1 functions. Mol Biol Cell 18: 5124–5138. doi: 10.1091/mbc.e07-06-0550
[24]  Haendeler J, Yin G, Hojo Y, Saito Y, Melaragno M, Yan C, Sharma VK, Heller M, Aebersold R, Berk BC (2003) GIT1 mediates Src-dependent activation of phospholipase C-gamma by angiotensin II and epidermal growth factor. J Biol Chem 278: 49936–49944. doi: 10.1074/jbc.m307317200
[25]  van Nieuw Amerongen GP, Natarajan K, Yin G, Hoefen RJ, Osawa M, Haendeler J, Ridley AJ, Fujiwara K, van Hinsbergh VW, Berk BC (2004) GIT1 mediates thrombin signaling in endothelial cells: role in turnover of RhoA-type focal adhesions. Circ Res 94: 1041–1049. doi: 10.1161/01.res.0000125627.77235.0c
[26]  Yin G, Haendeler J, Yan C, Berk BC (2004) GIT1 functions as a scaffold for MEK1-extracellular signal-regulated kinase 1 and 2 activation by angiotensin II and epidermal growth factor. Mol Cell Biol 24: 875–885. doi: 10.1128/mcb.24.2.875-885.2004
[27]  Segura I, Essmann CL, Weinges S, Acker-Palmer A (2007) Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat Neurosci 10: 301–310. doi: 10.1038/nn1858
[28]  Webb DJ, Kovalenko M, Whitmore L, Horwitz AF (2006) Phosphorylation of serine 709 in GIT1 regulates protrusive activity in cells. Biochem Biophys Res Commun 346: 1284–1288. doi: 10.1016/j.bbrc.2006.06.036
[29]  Webb DJ, Mayhew MW, Kovalenko M, Schroeder MJ, Jeffery ED, Whitmore L, Shabanowitz J, Hunt DF, Horwitz AF (2006) Identification of phosphorylation sites in GIT1. J Cell Sci 119: 2847–2850.
[30]  Zhang H., Webb, D J., Asmussen H., and Horwitz, A F. (2003). Synapse formation is regulated by the signaling adaptor GIT1. J Cell Biol 161, 131–142.
[31]  Erpel T, Superti-Furga G, Courtneidge, S A (1995) Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and inter-molecular interactions. EMBO J 14: 963–975.
[32]  Schmalzigaug R, Garron, M L, Roseman, J T, Xing Y, Davidson, C E, Arold, S T, Premont, R T (2007) GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin. Cell Signal 19: 1733–1744. doi: 10.1016/j.cellsig.2007.03.010
[33]  Za L, Albertinazzi C, Paris S, Gagliani M, Tacchetti C, de Curtis I (2006) betaPIX controls cell motility and neurite extension by regulating the distribution of GIT1. J Cell Sci. 119: 2654–2666. doi: 10.1242/jcs.02996
[34]  Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, et al. (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell 15: 853–865. doi: 10.1016/j.molcel.2004.09.016
[35]  Fujikawa A, Fukada M, Makioka Y, Suzuki R, Chow JP, Matsumoto M, Noda M (2011) Consensus substrate sequence for protein-tyrosine phosphatase receptor type Z. J Biol Chem. 286: 37137–37146. doi: 10.1074/jbc.m111.270140
[36]  Hofmann C, Shepelev M, Chernoff J (2004) The genetics of Pak. J Cell Sci 117: 4343–4354. doi: 10.1242/jcs.01392
[37]  Shikata Y, Birukov, K G, Garcia, J G (2003) S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J Appl Physiol 94: 1193–1203.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133