全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

NhaA Na+/H+ Antiporter Mutants That Hardly React to the Membrane Potential

DOI: 10.1371/journal.pone.0093200

Full-Text   Cite this paper   Add to My Lib

Abstract:

pH and Na+ homeostasis in all cells requires Na+/H+ antiporters. The crystal structure, obtained at pH 4, of NhaA, the main antiporter of Escherichia coli, has provided general insights into an antiporter mechanism and its unique pH regulation. Here, we describe a general method to select various NhaA mutants from a library of randomly mutagenized NhaA. The selected mutants, A167P and F267C are described in detail. Both mutants are expressed in Escherichia coli EP432 cells at 70–95% of the wild type but grow on selective medium only at neutral pH, A167P on Li+ (0.1 M) and F267C on Na+ (0.6 M). Surprising for an electrogenic secondary transporter, and opposed to wild type NhaA, the rates of A167P and F267C are almost indifferent to membrane potential. Detailed kinetic analysis reveals that in both mutants the rate limiting step of the cation exchange cycle is changed from an electrogenic to an electroneutral reaction.

References

[1]  Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nature reviews Microbiology 9: 330–343. doi: 10.1038/nrmicro2549
[2]  Padan E, Kozachkov L, Herz K, Rimon A (2009) NhaA crystal structure: functional-structural insights. J Exp Biol 212: 1593–1603. doi: 10.1242/jeb.026708
[3]  Padan E (2014) Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Bioch Biophys Acta (In press).
[4]  Fliegel L (2008) Molecular biology of the myocardial Na+/H+ exchanger. J Mol Cell Cardiol 44: 228–237. doi: 10.1016/j.yjmcc.2007.11.016
[5]  Padan E, Bibi E, Masahiro I, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: New insights. Biochim Biophys Acta 1717: 67–88. doi: 10.1016/j.bbamem.2005.09.010
[6]  Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505: 144–157. doi: 10.1016/s0005-2728(00)00284-x
[7]  Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288: C223–239. doi: 10.1152/ajpcell.00360.2004
[8]  Taglicht D, Padan E, Schuldiner S (1991) Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. J Biol Chem 266: 11289–11294.
[9]  Taglicht D, Padan E, Schuldiner S (1993) Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J Biol Chem 268: 5382–5387.
[10]  Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447: 549–565. doi: 10.1007/s00424-003-1110-3
[11]  Orlowski J, Grinstein S (2007) Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Current opinion in cell biology 19: 483–492. doi: 10.1016/j.ceb.2007.06.001
[12]  Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42: 527–552. doi: 10.1146/annurev.pharmtox.42.092001.143801
[13]  Wakabayashi S, Hisamitsu T, Pang T, Shigekawa M (2003) Kinetic dissection of two distinct proton binding sites in Na+/H+ exchangers by measurement of reverse mode reaction. J Biol Chem 278: 43580–43585. doi: 10.1074/jbc.m306690200
[14]  Zuber D, Krause R, Venturi M, Padan E, Bamberg E, et al. (2005) Kinetics of charge translocation in the passive downhill uptake mode of the Na+/H+ antiporter NhaA of Escherichia coli. Biochim Biophys Acta 1709: 240–250. doi: 10.1016/j.bbabio.2005.07.009
[15]  Mager T, Rimon A, Padan E, Fendler K (2011) Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J Biol Chem 286: 23570–23581. doi: 10.1074/jbc.m111.230235
[16]  Mager T (2013) Differential effect of mutations on the transport properties of NhaA from Escherichia coli. J Biol Chem 288: 24666–24675. doi: 10.1074/jbc.m113.484071
[17]  Jardetzky O (1996) Protein dynamics and conformational transitions in allosteric proteins. Progress in biophysics and molecular biology 65: 171–219. doi: 10.1016/s0079-6107(96)00010-7
[18]  Mitchell P (1968) Chemiosmotic coupling and energy transduction (Glynn Research Ltd, Bodmin, England).
[19]  Hunte C, Screpanti M, Venturi M, Rimon A, Padan E, et al. (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 534: 1197–1202. doi: 10.1038/nature03692
[20]  Padan E (2008) The enlightening encounter between structure and function in the NhaA Na(+)-H(+) antiporter. Trends Biochem Sci 33: 435–443. doi: 10.1016/j.tibs.2008.06.007
[21]  Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459: 347–355. doi: 10.1038/nature08143
[22]  Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends in pharmacological sciences 31: 418–426. doi: 10.1016/j.tips.2010.06.004
[23]  Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Ann Rev Biophys 42: 51–72. doi: 10.1146/annurev-biophys-083012-130429
[24]  Tzubery T, Rimon A, Padan E (2008) Structure-based functional study reveals multiple roles of transmembrane segment IX and loop VIII-IX in NhaA Na+/H+ antiporter of Escherichia coli at physiological pH. J Biol Chem 283: 15975–15987. doi: 10.1074/jbc.m800482200
[25]  Maes M, Rimon A, Kozachkov-Magrisso L, Friedler A, Padan E (2012) Revealing the Ligand Binding Site of NhaA Na+/H+ Antiporter and its pH Dependence. J Biol Chem 287: 38150–38157. doi: 10.1074/jbc.m112.391128
[26]  Radchenko MV, Tanaka K, Waditee R, Oshimi S, Matsuzaki Y, et al. (2006) Potassium/proton antiport system of Escherichia coli. J Biol Chem 281: 19822–19829. doi: 10.1074/jbc.m600333200
[27]  Pinner E, Kotler Y, Padan E, Schuldiner S (1993) Physiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli. J Biol Chem 268: 1729–1734.
[28]  Rimon A, Gerchman Y, Kariv Z, Padan E (1998) A point mutation (G338S) and its suppressor mutations affect both the pH response of the NhaA-Na+/H+ antiporter as well as the growth phenotype of Escherichia coli. J Biol Chem 273: 26470–26476. doi: 10.1074/jbc.273.41.26470
[29]  Galili L, Herz K, Dym O, Padan E (2004) Unraveling functional and structural interactions between transmembrane domains IV and XI of NhaA Na+/H+ antiporter of Escherichia coli. J Biol Chem 279: 23104–23113. doi: 10.1074/jbc.m400288200
[30]  Galili L, Rothman A, Kozachkov L, Rimon A, Padan E (2002) Transmembrane domain IV is involved in ion transport activity and pH regulation of the NhaA-Na+/H+ antiporter of Escherichia coli. Biochemistry 41: 609–617. doi: 10.1021/bi011655v
[31]  Schulz P, Garcia-Celma JJ, Fendler K (2008) SSM-based electrophysiology. Methods 46: 97–103. doi: 10.1016/j.ymeth.2008.07.002
[32]  Nozaki K, Kuroda T, Mizushima T, Tsuchiya T (1998) A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus. Biochim Biophys Acta 1369: 213–220. doi: 10.1016/s0005-2736(97)00223-x
[33]  Tzubery T, Rimon A, Padan E (2004) Mutation E252C increases drastically the Km value for Na+ and causes an alkaline shift of the pH dependence of NhaA Na+/H+ antiporter of Escherichia coli. J Biol Chem 279: 3265–3272. doi: 10.1074/jbc.m309021200
[34]  Padan E, Zilberstein D, Rottenberg H (1976) The proton electrochemical gradient in Escherichia coli cells. European journal of biochemistry/FEBS 63: 533–541. doi: 10.1111/j.1432-1033.1976.tb10257.x
[35]  Kozachkov L, Herz K, Padan E (2007) Functional and structural interactions of the transmembrane domain X of NhaA, Na+/H+ antiporter of Escherichia coli, at physiological pH. Biochemistry 46: 2419–2430. doi: 10.1021/bi602393s
[36]  Rimon A, Kozachkov-Magrisso L, Padan E (2012) The unwound portion dividing helix IV of NhaA undergoes a conformational change at physiological pH and lines the cation passage. Biochemistry 51: 9560–9569. doi: 10.1021/bi301030x
[37]  Olami Y, Rimon A, Gerchman Y, Rothman A, Padan E (1997) Histidine 225, a residue of the NhaA-Na+/H+ antiporter of Escherichia coli is exposed and faces the cell exterior. J Biol Chem 272: 1761–1768. doi: 10.1074/jbc.272.3.1761
[38]  Ohyama T, Igarashi K, Kobayashi H (1994) Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J Bacteriol 176: 4311–4315.
[39]  Padan E, Maisler N, Taglicht D, Karpel R, Schuldiner S (1989) Deletion of ant in Escherichia coli reveals its function in adaptation to high salinity and an alternative Na+/H+ antiporter system(s). J Biol Chem 264: 20297–20302.
[40]  Davies B, Mingioli E (1950) Mutants of Escherichia Coli requiring methionine or vitamin B12. J Bacteriol 60: 17–28.
[41]  Rosen BP (1986) Ion extrusion systems in E. coli. Methods Enzymol 125: 328–386. doi: 10.1016/s0076-6879(86)25028-4
[42]  Goldberg EB, Arbel T, Chen J, Karpel R, Mackie GA, et al. (1987) Characterization of a Na+/H+ antiporter gene of Escherichia coli. Proc Natl Acad Sci USA 84: 2615–2619. doi: 10.1073/pnas.84.9.2615
[43]  Schuldiner S, Fishkes H (1978) Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. Biochemistry 17: 706–711. doi: 10.1021/bi00597a023
[44]  Tsuboi Y, Inoue H, Nakamura N, Kanazawa H (2003) Identification of membrane domains of the Na+/H+ antiporter (NhaA) protein from Helicobacter pylori required for ion transport and pH sensing. J Biol Chem 278: 21467–21473. doi: 10.1074/jbc.m301932200
[45]  Pinner E, Padan E, Schuldiner S (1994) Kinetic properties of NhaB, a Na+/H+ antiporter from Escherichia coli. J Biol Chem 269: 26274–26279. doi: 10.1016/0014-5793(95)00364-f
[46]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133