[1] | Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nature reviews Microbiology 9: 330–343. doi: 10.1038/nrmicro2549
|
[2] | Padan E, Kozachkov L, Herz K, Rimon A (2009) NhaA crystal structure: functional-structural insights. J Exp Biol 212: 1593–1603. doi: 10.1242/jeb.026708
|
[3] | Padan E (2014) Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Bioch Biophys Acta (In press).
|
[4] | Fliegel L (2008) Molecular biology of the myocardial Na+/H+ exchanger. J Mol Cell Cardiol 44: 228–237. doi: 10.1016/j.yjmcc.2007.11.016
|
[5] | Padan E, Bibi E, Masahiro I, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: New insights. Biochim Biophys Acta 1717: 67–88. doi: 10.1016/j.bbamem.2005.09.010
|
[6] | Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505: 144–157. doi: 10.1016/s0005-2728(00)00284-x
|
[7] | Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288: C223–239. doi: 10.1152/ajpcell.00360.2004
|
[8] | Taglicht D, Padan E, Schuldiner S (1991) Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. J Biol Chem 266: 11289–11294.
|
[9] | Taglicht D, Padan E, Schuldiner S (1993) Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J Biol Chem 268: 5382–5387.
|
[10] | Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447: 549–565. doi: 10.1007/s00424-003-1110-3
|
[11] | Orlowski J, Grinstein S (2007) Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Current opinion in cell biology 19: 483–492. doi: 10.1016/j.ceb.2007.06.001
|
[12] | Putney LK, Denker SP, Barber DL (2002) The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42: 527–552. doi: 10.1146/annurev.pharmtox.42.092001.143801
|
[13] | Wakabayashi S, Hisamitsu T, Pang T, Shigekawa M (2003) Kinetic dissection of two distinct proton binding sites in Na+/H+ exchangers by measurement of reverse mode reaction. J Biol Chem 278: 43580–43585. doi: 10.1074/jbc.m306690200
|
[14] | Zuber D, Krause R, Venturi M, Padan E, Bamberg E, et al. (2005) Kinetics of charge translocation in the passive downhill uptake mode of the Na+/H+ antiporter NhaA of Escherichia coli. Biochim Biophys Acta 1709: 240–250. doi: 10.1016/j.bbabio.2005.07.009
|
[15] | Mager T, Rimon A, Padan E, Fendler K (2011) Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J Biol Chem 286: 23570–23581. doi: 10.1074/jbc.m111.230235
|
[16] | Mager T (2013) Differential effect of mutations on the transport properties of NhaA from Escherichia coli. J Biol Chem 288: 24666–24675. doi: 10.1074/jbc.m113.484071
|
[17] | Jardetzky O (1996) Protein dynamics and conformational transitions in allosteric proteins. Progress in biophysics and molecular biology 65: 171–219. doi: 10.1016/s0079-6107(96)00010-7
|
[18] | Mitchell P (1968) Chemiosmotic coupling and energy transduction (Glynn Research Ltd, Bodmin, England).
|
[19] | Hunte C, Screpanti M, Venturi M, Rimon A, Padan E, et al. (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 534: 1197–1202. doi: 10.1038/nature03692
|
[20] | Padan E (2008) The enlightening encounter between structure and function in the NhaA Na(+)-H(+) antiporter. Trends Biochem Sci 33: 435–443. doi: 10.1016/j.tibs.2008.06.007
|
[21] | Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459: 347–355. doi: 10.1038/nature08143
|
[22] | Boudker O, Verdon G (2010) Structural perspectives on secondary active transporters. Trends in pharmacological sciences 31: 418–426. doi: 10.1016/j.tips.2010.06.004
|
[23] | Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Ann Rev Biophys 42: 51–72. doi: 10.1146/annurev-biophys-083012-130429
|
[24] | Tzubery T, Rimon A, Padan E (2008) Structure-based functional study reveals multiple roles of transmembrane segment IX and loop VIII-IX in NhaA Na+/H+ antiporter of Escherichia coli at physiological pH. J Biol Chem 283: 15975–15987. doi: 10.1074/jbc.m800482200
|
[25] | Maes M, Rimon A, Kozachkov-Magrisso L, Friedler A, Padan E (2012) Revealing the Ligand Binding Site of NhaA Na+/H+ Antiporter and its pH Dependence. J Biol Chem 287: 38150–38157. doi: 10.1074/jbc.m112.391128
|
[26] | Radchenko MV, Tanaka K, Waditee R, Oshimi S, Matsuzaki Y, et al. (2006) Potassium/proton antiport system of Escherichia coli. J Biol Chem 281: 19822–19829. doi: 10.1074/jbc.m600333200
|
[27] | Pinner E, Kotler Y, Padan E, Schuldiner S (1993) Physiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli. J Biol Chem 268: 1729–1734.
|
[28] | Rimon A, Gerchman Y, Kariv Z, Padan E (1998) A point mutation (G338S) and its suppressor mutations affect both the pH response of the NhaA-Na+/H+ antiporter as well as the growth phenotype of Escherichia coli. J Biol Chem 273: 26470–26476. doi: 10.1074/jbc.273.41.26470
|
[29] | Galili L, Herz K, Dym O, Padan E (2004) Unraveling functional and structural interactions between transmembrane domains IV and XI of NhaA Na+/H+ antiporter of Escherichia coli. J Biol Chem 279: 23104–23113. doi: 10.1074/jbc.m400288200
|
[30] | Galili L, Rothman A, Kozachkov L, Rimon A, Padan E (2002) Transmembrane domain IV is involved in ion transport activity and pH regulation of the NhaA-Na+/H+ antiporter of Escherichia coli. Biochemistry 41: 609–617. doi: 10.1021/bi011655v
|
[31] | Schulz P, Garcia-Celma JJ, Fendler K (2008) SSM-based electrophysiology. Methods 46: 97–103. doi: 10.1016/j.ymeth.2008.07.002
|
[32] | Nozaki K, Kuroda T, Mizushima T, Tsuchiya T (1998) A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus. Biochim Biophys Acta 1369: 213–220. doi: 10.1016/s0005-2736(97)00223-x
|
[33] | Tzubery T, Rimon A, Padan E (2004) Mutation E252C increases drastically the Km value for Na+ and causes an alkaline shift of the pH dependence of NhaA Na+/H+ antiporter of Escherichia coli. J Biol Chem 279: 3265–3272. doi: 10.1074/jbc.m309021200
|
[34] | Padan E, Zilberstein D, Rottenberg H (1976) The proton electrochemical gradient in Escherichia coli cells. European journal of biochemistry/FEBS 63: 533–541. doi: 10.1111/j.1432-1033.1976.tb10257.x
|
[35] | Kozachkov L, Herz K, Padan E (2007) Functional and structural interactions of the transmembrane domain X of NhaA, Na+/H+ antiporter of Escherichia coli, at physiological pH. Biochemistry 46: 2419–2430. doi: 10.1021/bi602393s
|
[36] | Rimon A, Kozachkov-Magrisso L, Padan E (2012) The unwound portion dividing helix IV of NhaA undergoes a conformational change at physiological pH and lines the cation passage. Biochemistry 51: 9560–9569. doi: 10.1021/bi301030x
|
[37] | Olami Y, Rimon A, Gerchman Y, Rothman A, Padan E (1997) Histidine 225, a residue of the NhaA-Na+/H+ antiporter of Escherichia coli is exposed and faces the cell exterior. J Biol Chem 272: 1761–1768. doi: 10.1074/jbc.272.3.1761
|
[38] | Ohyama T, Igarashi K, Kobayashi H (1994) Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J Bacteriol 176: 4311–4315.
|
[39] | Padan E, Maisler N, Taglicht D, Karpel R, Schuldiner S (1989) Deletion of ant in Escherichia coli reveals its function in adaptation to high salinity and an alternative Na+/H+ antiporter system(s). J Biol Chem 264: 20297–20302.
|
[40] | Davies B, Mingioli E (1950) Mutants of Escherichia Coli requiring methionine or vitamin B12. J Bacteriol 60: 17–28.
|
[41] | Rosen BP (1986) Ion extrusion systems in E. coli. Methods Enzymol 125: 328–386. doi: 10.1016/s0076-6879(86)25028-4
|
[42] | Goldberg EB, Arbel T, Chen J, Karpel R, Mackie GA, et al. (1987) Characterization of a Na+/H+ antiporter gene of Escherichia coli. Proc Natl Acad Sci USA 84: 2615–2619. doi: 10.1073/pnas.84.9.2615
|
[43] | Schuldiner S, Fishkes H (1978) Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. Biochemistry 17: 706–711. doi: 10.1021/bi00597a023
|
[44] | Tsuboi Y, Inoue H, Nakamura N, Kanazawa H (2003) Identification of membrane domains of the Na+/H+ antiporter (NhaA) protein from Helicobacter pylori required for ion transport and pH sensing. J Biol Chem 278: 21467–21473. doi: 10.1074/jbc.m301932200
|
[45] | Pinner E, Padan E, Schuldiner S (1994) Kinetic properties of NhaB, a Na+/H+ antiporter from Escherichia coli. J Biol Chem 269: 26274–26279. doi: 10.1016/0014-5793(95)00364-f
|
[46] | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
|