全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genetic Signatures for Enhanced Olfaction in the African Mole-Rats

DOI: 10.1371/journal.pone.0093336

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Olfactory Receptor (OR) superfamily, the largest in the vertebrate genome, is responsible for vertebrate olfaction and is traditionally subdivided into 17 OR families. Recent studies characterising whole-OR subgenomes revealed a ‘birth and death’ model of evolution for a range of species, however little is known about fine-scale evolutionary dynamics within single-OR families. This study reports the first assessment of fine-scale OR evolution and variation in African mole-rats (Bathyergidae), a family of subterranean rodents endemic to sub-Saharan Africa. Because of the selective pressures of life underground, enhanced olfaction is proposed to be fundamental to the evolutionary success of the Bathyergidae, resulting in a highly diversified OR gene-repertoire. Using a PCR-sequencing approach, we analysed variation in the OR7 family across 14 extant bathyergid species, which revealed enhanced levels of functional polymorphisms concentrated across the receptors’ ligand-binding region. We propose that mole-rats are able to recognise a broad range of odorants and that this diversity is reflected throughout their OR7 gene repertoire. Using both classic tests and tree-based methods to test for signals of selection, we investigate evolutionary forces across the mole-rat OR7 gene tree. Four well-supported clades emerged in the OR phylogeny, with varying signals of selection; from neutrality to positive and purifying selection. Bathyergid life-history traits and environmental niche-specialisation are explored as possible drivers of adaptive OR evolution, emerging as non-exclusive contributors to the positive selection observed at OR7 genes. Our results reveal unexpected complexity of evolutionary mechanisms acting within a single OR family, providing insightful perspectives into OR evolutionary dynamics.

References

[1]  Firestein S (2001) How the olfactory system makes sense of scents. Nature 413: 211–218. doi: 10.1038/35093026
[2]  Brennan PA, Kendrick KM (2006) Mammalian social odours: attraction and individual recognition. Philos Trans R Soc B 361: 2061–2078. doi: 10.1098/rstb.2006.1931
[3]  Isogai Y, Si S, Pont-Lezica L, Tan T, Kapoor V, et al. (2011) Molecular organisation of vomeronasal chemoreception. Nature 478: 241–245. doi: 10.1038/nature10437
[4]  Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175–187. doi: 10.1016/0092-8674(91)90418-x
[5]  Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nature Rev Genet 9: 951–963. doi: 10.1038/nrg2480
[6]  Niimura Y, Nei M (2005b) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci U S A 102: 6039–6044. doi: 10.1073/pnas.0501922102
[7]  Niimura Y (2009) On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 1: 34–44. doi: 10.1093/gbe/evp003
[8]  Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11: 685–702. doi: 10.1101/gr.171001
[9]  Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94: 7799–7806. doi: 10.1073/pnas.94.15.7799
[10]  Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39: 121–152. doi: 10.1146/annurev.genet.39.073003.112240
[11]  Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS ONE 8: e708. doi: 10.1371/journal.pone.0000708
[12]  Gaillard I, Rouquier S, Pin JP, Mollard P, Richerd S, et al. (2002) A single olfactory receptor specifically binds a set of odorant molecules. Eur J Neurosci 15: 409–418. doi: 10.1046/j.0953-816x.2001.01871.x
[13]  Keller A, Vosshall LB (2008) Better smelling through genetics: mammalian odor perception. Curr Opin Neurobiol 18: 364–369. doi: 10.1016/j.conb.2008.09.020
[14]  Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human–mouse comparisons. Protein Sci 13: 240–254. doi: 10.1110/ps.03296404
[15]  Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25: 1806–1815. doi: 10.1523/jneurosci.4723-04.2005
[16]  Dulac C, Wagner S (2006) Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet 40: 449–467. doi: 10.1146/annurev.genet.39.073003.093937
[17]  Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 51: 505–517. doi: 10.1007/s10038-006-0391-8
[18]  Kishida T (2008) Pattern of the divergence of olfactory receptor genes during tetrapod evolution. PLoS ONE 3: e2385. doi: 10.1371/journal.pone.0002385
[19]  Alioto TS, Ngai J (2005) The odorant receptor repertoire of teleost fish. BMC Genomics 6: 173. doi: 10.1186/1471-2164-6-173
[20]  Emes RD, Beatson SA, Ponting CP, Goodstadt L (2004) Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res 14: 591–602. doi: 10.1101/gr.1940604
[21]  Kondo R, Kaneko S, Sun H, Sakaizumi M, Chigusa SI (2002) Diversification of olfactory receptor genes in the Japanese medaka fish, Oryzias latipes. Gene 282: 113–120. doi: 10.1016/s0378-1119(01)00843-5
[22]  Hayden S, Bekaert M, Crider TA, Marini S, Murphy WJ, et al. (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20: 1–9. doi: 10.1101/gr.099416.109
[23]  Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci U S A 101: 2156–2161. doi: 10.1073/pnas.0308051100
[24]  Ache BW, Young JM (2005) Olfaction: diverse Species, conserved principles. Neuron 48: 417–430. doi: 10.1016/j.neuron.2005.10.022
[25]  Gilad Y, Wiebe V, Przeworski M, Lancet D, P??bo S (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2: e5. doi: 10.1371/journal.pbio.0020005
[26]  Matsui A, Go Y, Niimura Y (2010) Degeneration of Olfactory Receptor gene repertories in primates: no direct link to full trichromatic vision. Mol Biol Evol 27: 1192–1200. doi: 10.1093/molbev/msq003
[27]  Kishida T, Kubota S, Shirayama Y, Fukami H (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biology Lett 3: 428–430. doi: 10.1098/rsbl.2007.0191
[28]  Thewissen JGM, George J, Rosa C, Kishida T (2011) Olfaction and brain size in the bowhead whale. Mar Mammal Sci 27: 282–294. doi: 10.1111/j.1748-7692.2010.00406.x
[29]  Sanders KL, Lee MSY, Leys R, Foster R, Keogh JS (2008) Molecular phylogeny and divergence dates for Austral-asian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J Evol Biol 21: 682–695. doi: 10.1111/j.1420-9101.2008.01525.x
[30]  Kishida T, Hikida T (2010) Degeneration patterns of the olfactory receptor genes in sea snakes. J Evol Biol 23: 302–310. doi: 10.1111/j.1420-9101.2009.01899.x
[31]  Steiger SS, Fidler AE, Kempenaers B (2009) Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability. BMC Evol Biol 9: 117. doi: 10.1186/1471-2148-9-117
[32]  Niimura Y, Nei M (2005a) Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice. Gene 346: 13–21. doi: 10.1016/j.gene.2004.09.025
[33]  Bennett NC, Faulkes CG (2000) African mole-rats ecology and eusociality. Cambridge: Cambridge University Press. 273 p.
[34]  Lacey EA, Patton JL, Cameron GN (2000) Life Underground: The Biology of Subterranean Rodents. Chicago and London: University of Chicago Press. 457 p.
[35]  Kott O, ?umbera R, Němec P (2010) Light perception in two strictly subterranean rodents: life in the dark or blue? PLoS ONE 5: e11810. doi: 10.1371/journal.pone.0011810
[36]  Eloff G (1958) The structural and functional degeneration of the eye of South African rodent moles Cryptomys bigalkei and Bathyergus maritimus. S Afr J Sci 54: 293–302.
[37]  Nemec P, Cveková P, Benada O, Wielkopolska E, Olkowicz S, et al. (2008) The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res Bull 75: 356–364. doi: 10.1016/j.brainresbull.2007.10.055
[38]  Zhao HB, Ru BH, Teeling EC, Faulkes CG, Zhang SY, et al. (2009) Rhodopsin molecular evolution in mammals inhabiting low light environments. PLoS ONE 4: e8326. doi: 10.1371/journal.pone.0008326
[39]  Crish SD, Rice FL, Park TJ, Comer CM (2003) Somatosensory organization and behavior in naked mole-rats I: vibrissa-like body hairs comprise a sensory array that mediates orientation to tactile stimuli. Brain Behav Evolut 62: 141–151. doi: 10.1159/000072723
[40]  Heth G, Todrank J, Begall S, Koch R, Zilbiger Y, et al. (2002a) Odours underground: subterranean rodents may not forage “blindly”. Behav Ecol Sociobiol 52: 53–58. doi: 10.1007/s00265-002-0476-0
[41]  Lange S, Neumann B, Hagemeyer P, Burda H (2005) Kairomone-guided food location in subterranean Zambian mole-rats (Cryptomys spp., Bathyergidae). Folia Zool 54: 263–268.
[42]  Judd TM, Sherman PW (1996) Naked mole-rats recruite colony mates to food sources. Anim Behav 52: 957–969. doi: 10.1006/anbe.1996.0244
[43]  Faulkes CG (1990) Social suppression of reproduction in the naked mole-rat Heterocephalus glaber. PhD thesis (unpublished), University of London, United Kingdom.
[44]  O’Riain MJ, Jarvis JUM (1997) Colony member recognition and xenophobia in the naked mole rat. Anim Behav 53: 487–498. doi: 10.1006/anbe.1996.0299
[45]  Reeve HK, Sherman PW (1991) Intracolonial aggression and nepotism by the breeding female naked mole-rat. In: Sherman PW, Jarvis JUM, Alexander RD, editors. The Biology of the Naked Mole-Rat. Princeton: Princeton University Press. 337–357.
[46]  Jarvis JUM (1991) Reproduction of naked mole-rats. In: Sherman PW, Jarvis JUM, Alexander RD, editors. The Biology of the Naked Mole-Rat. Princeton: Princeton University Press. 384–425.
[47]  Jarvis JUM, Sherman PW (2002) Heterocephalus glaber. Mammal Sp 706: 1–9. doi: 10.1644/1545-1410(2002)706<0001:hg>2.0.co;2
[48]  Smith TD, Bhatnagar KP, Dennis JC, Morrison EE, Park TJ (2007) Growth deficient vomeronasal organs in the naked mole-rat (Heterocephalus glaber). Brain Res 1132: 78–83. doi: 10.1016/j.brainres.2006.11.021
[49]  Bhatnagar KP, Smith TD (2010) The human vomeronasal organ. Part VI: A nonchemosensory vestige in the context of major variations of the mammalian vomeronasal organ. Curr Neurobiol 1: 1–9.
[50]  Holmes WG, Sherman PW (1983) Kin recognition in animals. Am Sci 71: 46–55.
[51]  Heth G, Todrank J, Burda H (2002) Individual odor similarities within colonies and across species of Cryptomys mole rats. J Mammal 83: 569–575. doi: 10.1644/1545-1542(2002)083<0569:ioswca>2.0.co;2
[52]  Heth G, Todrank J, Begall S, Wegner RE, Burda H (2004) Genetic relatedness discrimination in eusocial Cryptomys anselli mole-rats, Bathyergidae, Rodentia. Folia Zool 53: 269–278.
[53]  Burda H (1995) Individual recognition and incest avoidance in eusocial common mole-rats rather than reproductive suppression by parents. Experientia 51: 411 413. doi: 10.1007/bf01928906
[54]  Terakita A (2005) The Opsins. Genome Biol 6: 213. doi: 10.1186/gb-2005-6-3-213
[55]  Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nature Neurosci 5: 124–133.
[56]  Malnic B, Godfrey PA, Buck L (2004) The Human Olfactory receptor gene family. Proc Natl Acad Sci U S A 101: 2584–2589. doi: 10.1073/pnas.0307882100
[57]  Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: Evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci U S A 97: 2870–2874. doi: 10.1073/pnas.040580197
[58]  Meyerhans A, Vartanian J-P, Wain-Hobson S (1990) DNA recombination during PCR. Nucleic Acids Res 18: 1687–1691. doi: 10.1093/nar/18.7.1687
[59]  Parsegian VA (2006) van der Waals Forces: a Handbook for Biologists, Chemists, Engineers, and Physicists. Cambridge: Cambridge University Press.
[60]  Freitag J, Krieger J, Strotmann J, Breer H (1995) Two classes of olfactory receptors in Xenopus laevis. Neuron 15: 1383–1392. doi: 10.1016/0896-6273(95)90016-0
[61]  Glusman G, Bahar A, Sharon D, Pilpel Y, White J, et al. (2000) The olfactory receptor gene superfamily: Data mining, classification, and nomenclature. Mamm Genome 11: 1016–1023. doi: 10.1007/s003350010196
[62]  Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453: 175–183. doi: 10.1038/nature06936
[63]  Zarzo M (2007) The sense of smell: Molecular basis of odorant recognition. Biol Rev Camb Philos 82: 455–479. doi: 10.1111/j.1469-185x.2007.00019.x
[64]  Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929–936.
[65]  Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22: 1107–1118. doi: 10.1093/molbev/msi097
[66]  Ingram CM, Burda H, Honeycutt RL (2004) Molecular phylogenetics and taxonomy of the African mole-rats, genus Cryptomys and the new genus Coetomys Gray, 1864. Mol Phylogenet Evol 31: 997–1014. doi: 10.1016/j.ympev.2003.11.004
[67]  Ramm SA, Oliver PL, Ponting CP, Stockley P, Emes RD (2008) Sexual selection and the adaptive evolution of mammalian ejaculate proteins. Mol Biol Evol 25: 207–219. doi: 10.1093/molbev/msm242
[68]  Klein J, Sato A, Nagl S, O’hUigín C (1998) Molecular Trans-Species Polymorphism. Annu Rev Ecol Syst 29: 1–21. doi: 10.1146/annurev.ecolsys.29.1.1
[69]  Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Science Sign 2: ra9. doi: 10.1126/scisignal.2000016
[70]  Menashe I, Abaffy T, Hasin Y, Goshen S, Yahalom V, et al. (2007) Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 5: e284. doi: 10.1371/journal.pbio.0050284
[71]  Kambere MB, Lane RP (2007) Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes. BMC Neurosci 8: S2 doi: 10.1186/1471-2202-8-S3-S2.
[72]  Adkins RM, Gelke EL, Rowe D, Honeycutt RL (2001) Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Mol Biol Evol 18: 777–791. doi: 10.1093/oxfordjournals.molbev.a003860
[73]  Bardeleben C, Moore RL, Wayne RK (2005) A molecular phylogeny of the Canidae based on six nuclear loci. Mol Phylogenet Evol 37: 815–831. doi: 10.1016/j.ympev.2005.07.019
[74]  Nedbal MA, Allard MW, Honeycutt RL (1994) Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 3: 206–220. doi: 10.1006/mpev.1994.1023
[75]  Blanga-Kanfi S, Miranda H, Penn O, Pupko T, DeBry RW, et al. (2009) Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol Biol 9: 71. doi: 10.1186/1471-2148-9-71
[76]  Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292: 237–239. doi: 10.1038/292237a0
[77]  Gilad Y, Bustamante CD, Lancet D, Paabo S (2003) Natural selection on the olfactory receptor gene family in humans and chimpanzees. Am J Hum Genet 73: 489–501. doi: 10.1086/378132
[78]  Zhang X, De la Cruz O, Pinto JM, Nicolae D, Firestein S, et al. (2007) Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol 8: R86. doi: 10.1186/gb-2007-8-5-r86
[79]  Spinks AC, O’Riain MJ, Polakow DA (1998) Intercolonial encounters and xenophobia in the common mole-rat, Cryptomys hottentotus hottentotus (Bathyergidae): the effects of aridity, sex and reproductive status. Behav Ecol 69: 224–234. doi: 10.1093/beheco/9.4.354
[80]  Freitag J, Ludwig G, Andreini I, Rossler P, Breer H (1998) Olfactory receptors in aquatic and terrestrial vertebrates. J Comp Physiol 183: 635–650. doi: 10.1007/s003590050287
[81]  Zhang X, Zhang X, Firestein S (2007) Comparative genomics of odorant and pheromone receptor genes in rodents. Genomics 89: 441–450. doi: 10.1016/j.ygeno.2007.01.002
[82]  Kimura M, Ohta T (1969) The average number of generations until fixation of a mutant gene in a finite population. Genetics 61: 763–771.
[83]  Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, et al. (2007) The delayed rise of present-day mammals. Nature 446: 507–512. doi: 10.1038/nature05634
[84]  Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449: 468–472. doi: 10.1038/nature06162
[85]  Jacob S, Kinnunen LH, Metz J, Cooper M, McClintock MK (2001) Sustained human chemosignal unconsciously alters brain function. Neuroreport 12: 2391–2394. doi: 10.1097/00001756-200108080-00021
[86]  Jacob S, Hayreh DJ, McClintock MK (2001) Context-dependent effects of steroid chemosignals on human physiology and mood. Physiol Behav 74: 15–27. doi: 10.1016/s0031-9384(01)00537-6
[87]  Wyart C, Webster WW, Chen JH, Wilson SR, McClary A, et al. (2007) Smelling a single component of male sweat alters levels of cortisol in women. J Neurosci 27: 1261–1265. doi: 10.1523/jneurosci.4430-06.2007
[88]  Deuve JL, Bennett NC, O’Brien PCM, Ferguson-Smith M, Faulkes CG, et al. (2006) Complex evolution of X and Y autosomal translocations in the Giant mole-rat, Cryptomys mechowi (Bathyergidae). Chromosome Res 14: 681–69. doi: 10.1007/s10577-006-1080-3
[89]  Deuve JL, Bennett NC, Britton-Davidian J, Robinson TJ (2008) Chromosomal Phylogeny and evolution of the African mole-rats (Bathyergidae). Chromosome Res 16: 57–74. doi: 10.1007/s10577-007-1200-8
[90]  Deuve JL, Bennett NC, Ruiz-Herrera A, Waters PD, Britton-Davidian J, et al. (2008) Dissection of a Y-autosome translocation in an African mole-rat, Cryptomys hottentotus (Rodentia: Bathyergidae) and implications for the evolution of a meiotic sex chromosome chain. Chromosoma 117: 211–217. doi: 10.1007/s00412-007-0140-6
[91]  Sambrook J, Frisch E, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor : Cold Spring Harbor Laboratory Press.
[92]  Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid S 41: 95–98.
[93]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid S 22: 4673–4680. doi: 10.1093/nar/22.22.4673
[94]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics Appl Note 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
[95]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[96]  Rozas J, Gullaud M, Blandin G, Aguadé M (2001) DNA variation at the rp49 gene region of Drosophila simulans: evolutionary inferences from an unusual haplotype structure. Genetics 158: 1147–1155.
[97]  Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
[98]  Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17: 368–376. doi: 10.1007/bf01734359
[99]  Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society) 17: 57–86.
[100]  Posada D (2008) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25: 1253–1256. doi: 10.1093/molbev/msn083
[101]  Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. doi: 10.2307/2408678
[102]  Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526.
[103]  Doron-Faigenboim A, Stern A, Mayrose I, Bacharach E, Pupko T (2005) Selecton: a server for detecting evolutionary forces at a single amino-acid site. Bioinformatics 21: 2101–2103. doi: 10.1093/bioinformatics/bti259
[104]  Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, et al. (2007) Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35: 506–511. doi: 10.1093/nar/gkm382
[105]  Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.
[106]  Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22: 2472–2479. doi: 10.1093/molbev/msi237
[107]  Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556. doi: 10.1093/bioinformatics/13.5.555
[108]  Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088
[109]  Yang Z (2009) PAML manual. Version 4.3.
[110]  Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc B 64: 479–498. doi: 10.1111/1467-9868.00346
[111]  Storey JD (2003) The positive false discovery rate: A Bayesian interpretation and the q-value. Ann Stat 31: 2013–2035. doi: 10.1214/aos/1074290335
[112]  Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. J Roy Stat Soc B 66: 187–205. doi: 10.1111/j.1467-9868.2004.00439.x
[113]  Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1: 80–83. doi: 10.2307/3001968
[114]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57: 289–300.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133