The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii), a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs), which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.
References
[1]
Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, et al. (2001) Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. The EMBO journal 20: 723–733. doi: 10.1093/emboj/20.4.723
[2]
Adya N, Castilla LH, Liu PP (2000) Function of CBFbeta/Bro proteins. Semin Cell Dev Biol 11: 361–368. doi: 10.1006/scdb.2000.0189
[3]
Osato M (2004) Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23: 4284–4296. doi: 10.1038/sj.onc.1207779
[4]
Osato M, Ito Y (2005) Increased dosage of the RUNX1/AML1 gene: a third mode of RUNX leukemia? Critical reviews in eukaryotic gene expression 15: 217–228. doi: 10.1615/critreveukargeneexpr.v15.i3.40
[5]
Speck NA, Gilliland DG (2002) Core-binding factors in haematopoiesis and leukaemia. Nature reviews Cancer 2: 502–513. doi: 10.1038/nrc840
[6]
Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330. doi: 10.1016/s0092-8674(00)80986-1
[7]
Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, et al. (2010) Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood 115: 1610–1620. doi: 10.1182/blood-2009-07-232249
[8]
Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, et al. (2005) Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev 19: 1715–1722. doi: 10.1101/gad.1318305
[9]
Inoue K, Shiga T, Ito Y (2008) Runx transcription factors in neuronal development. Neural Dev 3: 20. doi: 10.1186/1749-8104-3-20
[10]
Osorio KM, Lee SE, McDermitt DJ, Waghmare SK, Zhang YV, et al. (2008) Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development 135: 1059–1068. doi: 10.1242/dev.012799
[11]
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, et al. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755–764. doi: 10.1016/s0092-8674(00)80258-5
[12]
Otto F, Kanegane H, Mundlos S (2002) Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Human mutation 19: 209–216. doi: 10.1002/humu.10043
[13]
Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, et al. (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113–124. doi: 10.1016/s0092-8674(02)00690-6
[14]
Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, et al. (2004) Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci U S A 101: 16016–16021. doi: 10.1073/pnas.0407180101
[15]
Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, et al. (2002) Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111: 621–633. doi: 10.1016/s0092-8674(02)01111-x
[16]
Ohno S, Sato T, Kohu K, Takeda K, Okumura K, et al. (2008) Runx proteins are involved in regulation of CD122, Ly49 family and IFN-gamma expression during NK cell differentiation. International immunology 20: 71–79. doi: 10.1093/intimm/dxm120
[17]
Fainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, et al. (2004) Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. The EMBO journal 23: 969–979. doi: 10.1038/sj.emboj.7600085
[18]
Watanabe K, Sugai M, Nambu Y, Osato M, Hayashi T, et al. (2010) Requirement for Runx proteins in IgA class switching acting downstream of TGF-beta 1 and retinoic acid signaling. Journal of immunology 184: 2785–2792. doi: 10.4049/jimmunol.0901823
[19]
Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, et al. (2002) Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nature neuroscience 5: 946–954. doi: 10.1038/nn925
[20]
Soung do Y, Dong Y, Wang Y, Zuscik MJ, Schwarz EM, et al. (2007) Runx3/AML2/Cbfa3 regulates early and late chondrocyte differentiation. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 22: 1260–1270. doi: 10.1359/jbmr.070502
[21]
Lee CW, Chuang LS, Kimura S, Lai SK, Ong CW, et al. (2011) RUNX3 functions as an oncogene in ovarian cancer. Gynecologic oncology 122: 410–417. doi: 10.1016/j.ygyno.2011.04.044
[22]
Kudo Y, Tsunematsu T, Takata T (2011) Oncogenic role of RUNX3 in head and neck cancer. Journal of cellular biochemistry 112: 387–393. doi: 10.1002/jcb.22967
[23]
Braun T, Woollard A (2009) RUNX factors in development: lessons from invertebrate model systems. Blood cells, molecules & diseases 43: 43–48. doi: 10.1016/j.bcmd.2009.05.001
[24]
Sullivan JC, Sher D, Eisenstein M, Shigesada K, Reitzel AM, et al. (2008) The evolutionary origin of the Runx/CBFbeta transcription factors—studies of the most basal metazoans. BMC evolutionary biology 8: 228. doi: 10.1186/1471-2148-8-228
[25]
Glusman G, Kaur A, Hood L, Rowen L (2004) An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution. BMC evolutionary biology 4: 43.
[26]
Ng CE, Osato M, Tay BH, Venkatesh B, Ito Y (2007) cDNA cloning of Runx family genes from the pufferfish (Fugu rubripes). Gene 399: 162–173. doi: 10.1016/j.gene.2007.05.014
[27]
Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, et al. (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Molecular Biology and Evolution 21: 1146–1151. doi: 10.1093/molbev/msh114
[28]
Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Molecular biology and evolution 24: 26–53. doi: 10.1093/molbev/msl150
[29]
Hecht J, Stricker S, Wiecha U, Stiege A, Panopoulou G, et al. (2008) Evolution of a core gene network for skeletogenesis in chordates. PLoS genetics 4: e1000025. doi: 10.1371/journal.pgen.1000025
[30]
Venkatesh B, Tay A, Dandona N, Patil JG, Brenner S (2005) A compact cartilaginous fish model genome. Current biology: CB 15: R82–83. doi: 10.1016/j.cub.2005.01.021
[31]
Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, et al. (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biology 5: e101. doi: 10.1371/journal.pbio.0050101
[32]
Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, et al. (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505: 174–179. doi: 10.1038/nature12826
[33]
Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, et al. (2006) Ancient noncoding elements conserved in the human genome. Science 314: 1892. doi: 10.1126/science.1130708
[34]
Terry A, Kilbey A, Vaillant F, Stewart M, Jenkins A, et al. (2004) Conservation and expression of an alternative 3′ exon of Runx2 encoding a novel proline-rich C-terminal domain. Gene 336: 115–125. doi: 10.1016/j.gene.2004.04.015
[35]
van der Meulen T, Kranenbarg S, Schipper H, Samallo J, van Leeuwen JL, et al. (2005) Identification and characterisation of two runx2 homologues in zebrafish with different expression patterns. Biochimica et biophysica acta 1729: 105–117. doi: 10.1016/j.bbaexp.2005.03.008
[36]
Bee T, Swiers G, Muroi S, Pozner A, Nottingham W, et al. (2010) Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood 115: 3042–3050. doi: 10.1182/blood-2009-08-238626
[37]
Liu JC, Lengner CJ, Gaur T, Lou Y, Hussain S, et al. (2011) Runx2 protein expression utilizes the Runx2 P1 promoter to establish osteoprogenitor cell number for normal bone formation. The Journal of biological chemistry 286: 30057–30070. doi: 10.1074/jbc.m111.241505
[38]
Akamatsu Y, Ohno T, Hirota K, Kagoshima H, Yodoi J, et al. (1997) Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. The Journal of biological chemistry 272: 14497–14500. doi: 10.1074/jbc.272.23.14497
[39]
Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, et al. (2001) Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104: 755–767. doi: 10.1016/s0092-8674(01)00271-9
[40]
Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, et al. (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19: 6778–6791. doi: 10.1093/emboj/19.24.6778
[41]
Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y (1999) A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18: 2551–2562. doi: 10.1093/emboj/18.9.2551
[42]
Javed A, Guo B, Hiebert S, Choi JY, Green J, et al. (2000) Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. Journal of cell science 113 (Pt 12): 2221–2231.
[43]
Tanaka T, Kurokawa M, Ueki K, Tanaka K, Imai Y, et al. (1996) The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Molecular and cellular biology 16: 3967–3979.
[44]
Zhang Y, Biggs JR, Kraft AS (2004) Phorbol ester treatment of K562 cells regulates the transcriptional activity of AML1c through phosphorylation. The Journal of biological chemistry 279: 53116–53125. doi: 10.1074/jbc.m405502200
[45]
Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, et al. (2006) Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. The Journal of biological chemistry 281: 7118–7128. doi: 10.1074/jbc.m508162200
[46]
Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G (1998) Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Molecular and cellular biology 18: 4197–4208.
[47]
Sears KE, Goswami A, Flynn JJ, Niswander LA (2007) The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in carnivora. Evolution & development 9: 555–565. doi: 10.1111/j.1525-142x.2007.00196.x
[48]
Goodman FR, Mundlos S, Muragaki Y, Donnai D, Giovannucci-Uzielli ML, et al. (1997) Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proceedings of the National Academy of Sciences of the United States of America 94: 7458–7463. doi: 10.1073/pnas.94.14.7458
[49]
Morrison NA, Stephens AA, Osato M, Polly P, Tan TC, et al. (2012) Glutamine repeat variants in human RUNX2 associated with decreased femoral neck BMD, broadband ultrasound attenuation and target gene transactivation. PloS one 7: e42617. doi: 10.1371/journal.pone.0042617
[50]
Jeong JH, Jin JS, Kim HN, Kang SM, Liu JC, et al. (2008) Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain. Journal of cellular physiology 217: 511–517. doi: 10.1002/jcp.21524
[51]
Park ES, Park J, Franceschi RT, Jo M (2012) The role for runt related transcription factor 2 (RUNX2) as a transcriptional repressor in luteinizing granulosa cells. Molecular and cellular endocrinology 362: 165–175. doi: 10.1016/j.mce.2012.06.005
[52]
Fan HY, Liu Z, Johnson PF, Richards JS (2011) CCAAT/enhancer-binding proteins (C/EBP)-alpha and -beta are essential for ovulation, luteinization, and the expression of key target genes. Molecular endocrinology 25: 253–268. doi: 10.1210/me.2010-0318
[53]
Dooley H, Flajnik MF (2006) Antibody repertoire development in cartilaginous fish. Dev Comp Immunol 30: 43–56. doi: 10.1016/j.dci.2005.06.022
[54]
Boehm T, Iwanami N, Hess I (2012) Evolution of the immune system in the lower vertebrates. Annu Rev Genomics Hum Genet 13: 127–149. doi: 10.1146/annurev-genom-090711-163747
[55]
Drissi H, Luc Q, Shakoori R, Chuva De Sousa Lopes S, Choi JY, et al. (2000) Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of cellular physiology 184: 341–350. doi: 10.1002/1097-4652(200009)184:3<341::aid-jcp8>3.3.co;2-q
[56]
Spender LC, Whiteman HJ, Karstegl CE, Farrell PJ (2005) Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells. Oncogene 24: 1873–1881. doi: 10.1038/sj.onc.1208404
[57]
Drissi H, Pouliot A, Koolloos C, Stein JL, Lian JB, et al. (2002) 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Experimental cell research 274: 323–333. doi: 10.1006/excr.2002.5474
[58]
Hovhannisyan H, Zhang Y, Hassan MQ, Wu H, Glackin C, et al. (2013) Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene. Journal of cellular physiology 228: 313–321. doi: 10.1002/jcp.22109
[59]
Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, et al. (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444: 499–502. doi: 10.1038/nature05295
[60]
Ng CE, Yokomizo T, Yamashita N, Cirovic B, Jin H, et al. (2010) A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem cells 28: 1869–1881. doi: 10.1002/stem.507
[61]
Attanasio C, Nord AS, Zhu Y, Blow MJ, Li Z, et al. (2013) Fine tuning of craniofacial morphology by distant-acting enhancers. Science 342: 1241006. doi: 10.1126/science.1241006
[62]
Lee AP, Kerk SY, Tan YY, Brenner S, Venkatesh B (2011) Ancient vertebrate conserved noncoding elements have been evolving rapidly in teleost fishes. Molecular biology and evolution 28: 1205–1215. doi: 10.1093/molbev/msq304
[63]
Xu Y, Wang K, Gao W, Zhang C, Huang F, et al. (2013) MicroRNA-106b regulates the tumor suppressor RUNX3 in laryngeal carcinoma cells. FEBS Lett 587: 3166–3174. doi: 10.1016/j.febslet.2013.05.069
[64]
Rossetti S, Sacchi N (2013) RUNX1: A MicroRNA Hub in Normal and Malignant Hematopoiesis. Int J Mol Sci 14: 1566–1588. doi: 10.3390/ijms14011566
[65]
Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, et al. (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8: 212–227. doi: 10.1038/nrendo.2011.234
[66]
Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, et al. (1993) Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 194: 314–331. doi: 10.1006/viro.1993.1262
[67]
Kagoshima H, Akamatsu Y, Ito Y, Shigesada K (1996) Functional dissection of the alpha and beta subunits of transcription factor PEBP2 and the redox susceptibility of its DNA binding activity. The Journal of biological chemistry 271: 33074–33082. doi: 10.1074/jbc.271.51.33074
[68]
Davies WI, Tay BH, Zheng L, Danks JA, Brenner S, et al. (2012) Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii). PloS one 7: e51276. doi: 10.1371/journal.pone.0051276
[69]
Tan YY, Kodzius R, Tay BH, Tay A, Brenner S, et al. (2012) Sequencing and analysis of full-length cDNAs, 5′-ESTs and 3′-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii). PloS one 7: e47174. doi: 10.1371/journal.pone.0047174
[70]
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. doi: 10.1093/oxfordjournals.molbev.a026334
[71]
Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, et al. (2013) Ensembl 2013. Nucleic acids research 41: D48–55. doi: 10.1093/nar/gks1236
[72]
Jurka J, Klonowski P, Dagman V, Pelton P (1996) CENSOR—a program for identification and elimination of repetitive elements from DNA sequences. Computers & chemistry 20: 119–121. doi: 10.1016/s0097-8485(96)80013-1