全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

In Vitro Evaluation of the Inhibitory Potential of Pharmaceutical Excipients on Human Carboxylesterase 1A and 2

DOI: 10.1371/journal.pone.0093819

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two major forms of human carboxylesterase (CES), CES1A and CES2, dominate the pharmacokinetics of most prodrugs such as imidapril and irinotecan (CPT-11). Excipients, largely used as insert vehicles in formulation, have been recently reported to affect drug enzyme activity. The influence of excipients on the activity of CES remains undefined. In this study, the inhibitory effects of 25 excipients on the activities of CES1A1 and CES2 were evaluated. Imidapril and CPT-11 were used as substrates and cultured with liver microsomes in vitro. Imidapril hydrolase activities of recombinant CES1A1 and human liver microsomes (HLM) were strongly inhibited by sodium lauryl sulphate (SLS) and polyoxyl 40 hydrogenated castor oil (RH40) [Inhibition constant (Ki) = 0.04±0.01 μg/ml and 0.20±0.09 μg/ml for CES1A1, and 0.12±0.03 μg/ml and 0.76±0.33 μg/ml, respectively, for HLM]. The enzyme hydrolase activity of recombinant CES2 was substantially inhibited by Tween 20 and polyoxyl 35 castor oil (EL35) (Ki = 0.93±0.36 μg/ml and 4.4±1.24 μg/ml, respectively). Thus, these results demonstrate that surfactants such as SLS, RH40, Tween 20 and EL35 may attenuate the CES activity; such inhibition should be taken into consideration during drug administration.

References

[1]  Buggins TR, Dickinson PA, Taylor G (2007) The effects of pharmaceutical excipients on drug disposition. Adv Drug Deliv Rev 59: 1482–503. doi: 10.1016/j.addr.2007.08.017
[2]  Hirama S, Tatsuishi T, Iwase K, Nakao H, Umebayashi C, et al. (2004) Flow-cytometric analysis on adverse effects of polysorbate 80 in rat thymocytes. Toxicology 199: 137–43. doi: 10.1016/j.tox.2004.02.017
[3]  Nahata MC (2009) Safety of “inert” additives or excipients in paediatric medicines. Arch Dis Child Fetal Neonatal Ed 94: F392–3. doi: 10.1136/adc.2009.160192
[4]  Thackaberry EA, Kopytek S, Sherratt P, Trouba K, McIntyre B (2010) Comprehensive investigation of hydroxypropyl methylcellulose, propylene glycol, polysorbate 80, and hydroxypropyl-beta-cyclodextrin for use in general toxicology studies. Toxicol Sci 117: 485–92. doi: 10.1093/toxsci/kfq207
[5]  Hamid KA, Katsumi H, Sakane T, Yamamoto A (2009) The effects of common solubilizing agents on the intestinal membrane barrier functions and membrane toxicity in rats. Int J Pharm 379: 100–8. doi: 10.1016/j.ijpharm.2009.06.018
[6]  EMA (2005) Reflection paper: formulations of choice for the paediatric population. EMA/CHMP/PEG/194810/2005.
[7]  Ursino MG, Poluzzi E, Caramella C, De Ponti F (2011) Excipients in medicinal products used in gastroenterology as a possible cause of side effects. Regul Toxicol Pharmacol 60: 93–105. doi: 10.1016/j.yrtph.2011.02.010
[8]  Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, et al. (2004) Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm 278: 119–31. doi: 10.1016/j.ijpharm.2004.03.001
[9]  Lin Y, Shen Q, Katsumi H, Okada N, Fujita T, et al. (2007) Effects of Labrasol and other pharmaceutical excipients on the intestinal transport and absorption of rhodamine123, a P-glycoprotein substrate, in rats. Biol Pharm Bull 30: 1301–7. doi: 10.1248/bpb.30.1301
[10]  Sachs-Barrable K, Thamboo A, Lee SD, Wasan KM (2007) Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells. J Pharm Pharm Sci 10: 319–31.
[11]  Shen Q, Li W, Lin Y, Katsumi H, Okada N, et al. (2008) Modulating effect of polyethylene glycol on the intestinal transport and absorption of prednisolone, methylprednisolone and quinidine in rats by in-vitro and in-situ absorption studies. J Pharm Pharmacol 60: 1633–41. doi: 10.1211/jpp/60.12.0009
[12]  Shen Q, Lin Y, Handa T, Doi M, Sugie M, et al. (2006) Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies. Int J Pharm 313: 49–56. doi: 10.1016/j.ijpharm.2006.01.020
[13]  Shono Y, Nishihara H, Matsuda Y, Furukawa S, Okada N, et al. (2004) Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. J Pharm Sci 93: 877–85. doi: 10.1002/jps.20017
[14]  Zhu S, Huang R, Hong M, Jiang Y, Hu Z, et al. (2009) Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450. Eur J Pharm Sci 37: 573–80. doi: 10.1016/j.ejps.2009.05.001
[15]  Engel A, Oswald S, Siegmund W, Keiser M (2012) Pharmaceutical excipients influence the function of human uptake transporting proteins. Mol Pharm 9: 2577–81. doi: 10.1021/mp3001815
[16]  Bravo Gonzalez RC, Huwyler J, Boess F, Walter I, Bittner B (2004) In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Dispos 25: 37–49. doi: 10.1002/bdd.383
[17]  Ren X, Mao X, Cao L, Xue K, Si L, et al. (2009) Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur J Pharm Sci 36: 401–11. doi: 10.1016/j.ejps.2008.11.002
[18]  Imai T (2006) Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab Pharmacokinet 21: 173–85. doi: 10.2133/dmpk.21.173
[19]  Hatfield MJ, Potter PM (2011) Carboxylesterase inhibitors. Expert Opin Ther Pat 21: 1159–71. doi: 10.1517/13543776.2011.586339
[20]  Satoh T, Taylor P, Bosron WF, Sanghani SP, Hosokawa M, et al. (2002) Current progress on esterases: from molecular structure to function. Drug Metab Dispos 30: 488–93. doi: 10.1124/dmd.30.5.488
[21]  Fukami T, Takahashi S, Nakagawa N, Maruichi T, Nakajima M, et al. (2010) In vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities. Drug Metab Dispos 38: 2173–8. doi: 10.1124/dmd.110.034454
[22]  Xu YJ, Zhang CL, Li Xiping, Wu Tao, Ren XH, et al.. (2013) Evaluation of the inhibitory effects of antihypertensive drugs on human carboxylesterase in vitro. Drug Metab Pharmacokinet.
[23]  Takahashi S, Katoh M, Saitoh T, Nakajima M, Yokoi T (2008) Allosteric kinetics of human carboxylesterase 1: species differences and interindividual variability. J Pharm Sci 97: 5434–45. doi: 10.1002/jps.21376
[24]  Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res 60: 1189–92.
[25]  Zhang CL, Gao P, Yin WF, Xu YJ, Xiang DC, et al. (2012) Dexamethasone regulates differential expression of carboxylesterase 1 and carboxylesterase 2 through activation of nuclear receptors. J Huazhong Univ Sci Technolog Med Sci 32: 798–805. doi: 10.1007/s11596-012-1037-z
[26]  Watanabe A, Fukami T, Nakajima M, Takamiya M, Aoki Y, et al. (2009) Human arylacetamide deacetylase is a principal enzyme in flutamide hydrolysis. Drug Metab Dispos 37: 1513–20. doi: 10.1124/dmd.109.026567
[27]  Takahashi S, Katoh M, Saitoh T, Nakajima M, Yokoi T (2009) Different inhibitory effects in rat and human carboxylesterases. Drug Metab Dispos 37: 956–61. doi: 10.1124/dmd.108.024331
[28]  Golightly LK, Smolinske SS, Bennett ML, Sutherland EW 3rd, Rumack BH (1988) Pharmaceutical excipients. Adverse effects associated with inactive ingredients in drug products (Part I). Med Toxicol Adverse Drug Exp 3: 128–65. doi: 10.1007/bf03259937
[29]  Tompkins L, Lynch C, Haidar S, Polli J, Wang H (2010) Effects of commonly used excipients on the expression of CYP3A4 in colon and liver cells. Pharm Res 27: 1703–12. doi: 10.1007/s11095-010-0170-2
[30]  Johnston TP, Palmer WK (1993) Mechanism of poloxamer 407-induced hypertriglyceridemia in the rat. Biochem Pharmacol 46: 1037–42. doi: 10.1016/0006-2952(93)90668-m
[31]  Johnston TP, Palmer WK (1997) Effect of poloxamer 407 on the activity of microsomal 3-hydroxy-3-methylglutaryl CoA reductase in rats. J Cardiovasc Pharmacol 29: 580–5. doi: 10.1097/00005344-199705000-00003
[32]  Johnston TP, Baker JC, Hall D, Jamal S, Palmer WK, et al. (2000) Regression of poloxamer 407-induced atherosclerotic lesions in C57BL/6 mice using atorvastatin. Atherosclerosis 149: 303–13. doi: 10.1016/s0021-9150(99)00339-1
[33]  Johnston TP, Baker JC, Jamal AS, Hall D, Emeson EE, et al. (1999) Potential downregulation of HMG-CoA reductase after prolonged administration of P-407 in C57BL/6 mice. J Cardiovasc Pharmacol 34: 831–42. doi: 10.1097/00005344-199912000-00010
[34]  Blonder JM, Baird L, Fulfs JC, Rosenthal GJ (1999) Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 gel. Life Sci 65: PL261–6. doi: 10.1016/s0024-3205(99)00495-6
[35]  Wasan KM, Subramanian R, Kwong M, Goldberg IJ, Wright T, et al. (2003) Poloxamer 407-mediated alterations in the activities of enzymes regulating lipid metabolism in rats. J Pharm Pharm Sci 6: 189–97.
[36]  Ross MK, Crow JA (2007) Human carboxylesterases and their role in xenobiotic and endobiotic metabolism. J Biochem Mol Toxicol 21: 187–96. doi: 10.1002/jbt.20178
[37]  Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Koyano N, et al. (2007) Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes. Drug Metab Rev 39: 1–15. doi: 10.1080/03602530600952164
[38]  Maruichi T, Fukami T, Nakajima M, Yokoi T (2010) Transcriptional regulation of human carboxylesterase 1A1 by nuclear factor-erythroid 2 related factor 2 (Nrf2). Biochem Pharmacol 79: 288–95. doi: 10.1016/j.bcp.2009.08.019
[39]  Godin SJ, Crow JA, Scollon EJ, Hughes MF, DeVito MJ, et al. (2007) Identification of rat and human cytochrome p450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate. Drug Metab Dispos 35: 1664–71. doi: 10.1124/dmd.107.015388
[40]  Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, et al. (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun 233: 117–20. doi: 10.1006/bbrc.1997.6413
[41]  Ahuja N, Katare OP, Singh B (2007) Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm 65: 26–38. doi: 10.1016/j.ejpb.2006.07.007
[42]  Sintov AC, Shapiro L (2004) New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Control Release 95: 173–83. doi: 10.1016/j.jconrel.2003.11.004
[43]  Vandecruys R, Peeters J, Verreck G, Brewster ME (2007) Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 342: 168–75. doi: 10.1016/j.ijpharm.2007.05.006
[44]  Iwase K, Oyama Y, Tatsuishi T, Yamaguchi JY, Nishimura Y, et al. (2004) Cremophor EL augments the cytotoxicity of hydrogen peroxide in lymphocytes dissociated from rat thymus glands. Toxicol Lett 154: 143–8. doi: 10.1016/j.toxlet.2004.08.003
[45]  Rege BD, Kao JP, Polli JE (2002) Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci 16: 237–46. doi: 10.1016/s0928-0987(02)00055-6
[46]  Maxwell DM, Brecht KM (2001) Carboxylesterase: specificity and spontaneous reactivation of an endogenous scavenger for organophosphorus compounds. J Appl Toxicol 21 Suppl 1S103–7. doi: 10.1002/jat.833

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133