全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Differential Effect of Culture Temperature and Specific Growth Rate on CHO Cell Behavior in Chemostat Culture

DOI: 10.1371/journal.pone.0093865

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mild hypothermia condition in mammalian cell culture technology has been one of the main focuses of research for the development of breeding strategies to maximize productivity of these production systems. Despite the large number of studies that show positive effects of mild hypothermia on specific productivity of r-proteins, no experimental approach has addressed the indirect effect of lower temperatures on specific cell growth rate, nor how this condition possibly affects less specific productivity of r-proteins. To separately analyze the effects of mild hypothermia and specific growth rate on CHO cell metabolism and recombinant human tissue plasminogen activator productivity as a model system, high dilution rate (0.017 h?1) and low dilution rate (0.012 h?1) at two cultivation temperatures (37 and 33°C) were evaluated using chemostat culture. The results showed a positive effect on the specific productivity of r-protein with decreasing specific growth rate at 33°C. Differential effect was achieved by mild hypothermia on the specific productivity of r-protein, contrary to the evidence reported in batch culture. Interestingly, reduction of metabolism could not be associated with a decrease in culture temperature, but rather with a decrease in specific growth rate.

References

[1]  Visiongain Biosimilars and Follow-On Biologics (2012) Global Market Outlook 2010–2022, 142.
[2]  Lim Y, Wong N, Lee Y, Ku S, Wong D, et al. (2010) Engineering mammalian cells in bioprocessing – current achievements and future perspectives. Biotechnol. Appl. Biochem. 55: 175–189. doi: 10.1042/ba20090363
[3]  Wurm F (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22: 1393–1398. doi: 10.1038/nbt1026
[4]  Kim J, Kim Y, Lee G (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol 93: 917–930. doi: 10.1007/s00253-011-3758-5
[5]  Furukawa K, Ohsuye K (1998) Effect of culture temperature on a recombinant CHO cell line producing C-terminal α-amidating enzyme. Cytotechnol 26: 153–164.
[6]  Kauffmann H, Mazur X, Fussenegger M, Bailey J (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol. Bioeng 63: 573–582. doi: 10.1002/(sici)1097-0290(19990605)63:5<573::aid-bit7>3.0.co;2-y
[7]  Schatz S, Kerschbaumer R, Gerstenbauer G, Kral M, Dorner F, et al. (2003) Higher expression of Fab antibody fragments in a CHO cell line at reduced temperature. Biotechnol. Bioeng 84: 433–439. doi: 10.1002/bit.10793
[8]  Yoon S, Song J, Lee G (2003a) Effect of Low Culture Temperature on Specific Productivity, Transcription Level, and Heterogeneity of Erythropoietin in Chinese Hamster Ovary Cells. Biotechnol. Bioeng 82: 289–298. doi: 10.1002/bit.10566
[9]  Yoon S, Kim S, Song J, Lee G (2006) Biphasic culture strategy for enhancing volumetric erythropoietin productivity of Chinese hamster ovary cells. Enzym. Microb. Technol 39: 362–365. doi: 10.1016/j.enzmictec.2005.11.029
[10]  Fox S, Patel U, Yap M, Wang D (2004) Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: Experimental and modelling. Biotechnol. Bioeng 85: 177–184. doi: 10.1002/bit.10861
[11]  Fogolín M, Wagner R, Etcheverrigaray M, Kratje R (2004) Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSFproducing CHO cells. J. Biotechnol 109: 179–191. doi: 10.1016/j.jbiotec.2003.10.035
[12]  Bollati-Fogolin M, Forno G, Nimtz M, Conradt H, Etcheverrigaray M, et al. (2005) Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality. Biotechnol. Prog 21: 17–21. doi: 10.1021/bp049825t
[13]  Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, et al. (2006) Process parameter shifting: Part I. Effect of DOT, pH, temperature on the performance of Epo-Fc expressing CHO cells cultivated in Controlled batch bioreactors. Biotechnol. Bioeng 94: 1033–1043. doi: 10.1002/bit.21013
[14]  Berrios J, Díaz-Barrera A, Bazán C, Altamirano C (2009) Relationship between tissue plasminogen activator production and specific growth rate in Chinese hamster ovary cells cultured in mannose at low temperature. Biotechnol. Lett. 31: 1493–1497. doi: 10.1007/s10529-009-0050-1
[15]  Becerra S, Berrios J, Osses N, Altamirano C (2012) Exploring the effect of mild hypothermia on CHO cell productivity. Biochem. Eng. J. 60: 1–8. doi: 10.1016/j.bej.2011.10.003
[16]  Carvalhal A, Sá Santos S, Calado J, Haury M, Carrondo M (2003) Cell Growth Arrest by Nucleotides, Nucleosides and Bases as a Tool for Improved Production of Recombinant Proteins. Biotechnol. Prog 19: 69–83. doi: 10.1021/bp0255917
[17]  Yoon S, Song J, Lee G (2003b) Effect of Low Culture Temperature on Specific Productivity and Transcription Level of Anti-4-1BB Antibody in Recombinant Chinese Hamster Ovary Cells. Biotechnol. Prog 19: 1383–1386. doi: 10.1021/bp034051m
[18]  Bi J, Shuttleworth J, Al-Rubeai M (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity in p21Cip1-arrested CHO cells. Biotechnol. Bioeng 85: 741–749. doi: 10.1002/bit.20025
[19]  Bollati-Fogolín M, Wagner R, Etcheverrigaray M, Kratje R (2004) Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF producing CHO cells. J. Biotechnol 109: 179–191. doi: 10.1016/j.jbiotec.2003.10.035
[20]  Yoon S, Choi S, Song J, Lee G (2005) Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37°C. Biotechnol. Bioeng 89: 345–356. doi: 10.1002/bit.20353
[21]  Sonna L, Fujita J, Gaffin S, Lilly C (2002) Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol 92: 1725–1742.
[22]  Al-Fageeh M, Marchant R, Carden M, Smales C (2006) The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol. Bioeng 93: 829–835. doi: 10.1002/bit.20789
[23]  Smales M, Dinnis D, Stansfield S, Alete D, Sage E, et al. (2004) Comparative proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnol. Bioeng 88: 474–488. doi: 10.1002/bit.20272
[24]  Baik J, Lee M, An S, Yoon S, Joo E, et al. (2006) Initial Transcriptome and Proteome Analyses of Low Culture Temperature-Induced Expression in CHO Cells Producing Erythropoietin. Biotechnol. Bioeng 93: 361–372. doi: 10.1002/bit.20717
[25]  Masterton R, Roobol A, Al-Fageeh M, Carden M, Smales M (2010) Post-translational events of a model reporter protein proceed with higher fidelity and accurancy upon mild hypothermic culturing of Chinese hamster ovary cells. Biotechnol. Bioeng 105: 215–221. doi: 10.1002/bit.22533
[26]  Vergara M, Becerra S, Díaz-Barrera A, Berrios J, Altamirano C (2012) Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA. Electronic J. Biotechnol. DOI: 10.2225/vol15-issue6-fulltext-2.
[27]  Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, et al. (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnol 36: 71–83.
[28]  Oguchi S, Saito H, Tsukahara T, Tsumura H (2006) pH condition in temperature shift cultivation enhances cell longevity and specific hMab productivity in CHO culture. Cytotechnol 52: 199–207. doi: 10.1007/s10616-007-9059-2
[29]  Shi M, Xie Z, Yu M, Shen B, Guo N (2005) Controlled growth of Chinese hamster ovary cells and high expression of antibody-IL-2 fusion proteins by temperature manipulation. Biotechnol. Lett 27: 1879–1884. doi: 10.1007/s10529-005-3897-9
[30]  Marchant R, Al-Fageeh M, Underhill M, Racher A, Smales M (2008) Metabolic rates, growth phase, and mRNA levels influence cell-specific antibody production levels from in vitro-cultured mammalian cells at sub-physiological temperatures. Mol. Biotechnol 39: 69–77. doi: 10.1007/s12033-008-9032-0
[31]  Nam J, Ermonval M, Sharfstein S (2009) The effects of microcarrier culture on recombinant CHO cells under biphasic hypothermic culture conditions. Cytotechnol 59: 81–91. doi: 10.1007/s10616-009-9196-x
[32]  Omasa T, Furuichi K, Iemura T, Katakura M, Suga K (2010) Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture. Bioprocess. Biosyst. Eng 33: 117–125. doi: 10.1007/s00449-009-0351-8
[33]  Berrios J, Altamirano C, Osses N, Gonzalez R (2011) Continuous CHO cell cultures with improved recombinant protein productivity by using mannose as carbon source: metabolic analysis and scale-up simulation. Chem. Eng. Sci. 66: 2431–2439. doi: 10.1016/j.ces.2011.03.011
[34]  Krampe B, Fagan A, Gaora P, Al-Rubeai M (2011) Chemostat-based transcriptional analysis of growth rate change and Bcl-2 over-expression in NS0 cells. Biotechnol. Bioeng 108: 1603–1615. doi: 10.1002/bit.23100
[35]  Burleigh S, Van de Laar T, Stroop C, Van Grunsven W, O'Donoghue N, et al. (2011) Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells. BMC Biotechnol 11: 95–112. doi: 10.1186/1472-6750-11-95
[36]  Hoskisson P, Hobbs G (2005) Continuous culture – making a comeback? Microb 151: 3153–3159. doi: 10.1099/mic.0.27924-0
[37]  Bailey J, Ollis D (1986) Kinetics of Substrate Utilization, Product Formation, and Biomass Production in Cell Cultures. In: Bailey J, Ollis D, editors. Biochemical Engineering Fundamentals 2nd edn. McGraw-Hill, United States of America. pp. 373–454.
[38]  Altamirano C, Illanes A, Casablancas A, Gamez X, Cairó J, et al. (2001) Analysis of CHO Cells Metabolic Redistribution in a Glutamate-Based Defined Medium in Continuous Culture. Biotechnol. Prog 17: 1032–1041. doi: 10.1021/bp0100981
[39]  Díaz-Barrera A, Soto E, Altamirano C (2012) Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous culture. J. Ind. Microbiol. Biotechnol 39: 613–621. doi: 10.1007/s10295-011-1055-z
[40]  Yee J, Gerdtzen Z, Hu W (2009) Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol. Bioeng 102: 246–263. doi: 10.1002/bit.22039
[41]  Hayter P, Curling E, Gould M, Baines A, Jenkins N, et al. (1993) The effect of the dilution rate on CHO cell physiology and recombinant interferon- production in glucose-limited chemostat culture. Biotechnol. Bioeng 42: 1077–1085. doi: 10.1002/bit.260420909
[42]  Robinson D, Memmert K (1991) Kinetics of recombinant immunoglobulins production by mammalian cells in continuous culture, Biotechnol. Bioeng. 38: 972–976. doi: 10.1002/bit.260380903
[43]  Sinclair R (1974) Response of mammalian cells to controlled growth rates in steady-state continuous culture, In Vitro. 10: 295–307. doi: 10.1007/bf02615311
[44]  Miller W, Blanch H, Wilke C (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate and pH. Biotechnol. Bioeng 32: 947–965. doi: 10.1002/bit.260320803
[45]  Linardos T, Kalogerakis N, Behie L (1992) Cell cycle model for growth rate and death rate in continuous suspension hybridoma cultures. Biotechnol. Bioeng 40: 359–368. doi: 10.1002/bit.260400305
[46]  Ray N, Karkare S, Runstadler P (1989) Cultivation of hybridoma cells in continuous culture: Kinetics of growth and product formation. Biotechnol. Bioeng 33: 724–730. doi: 10.1002/bit.260330610
[47]  Kou T, Fan L, Zhou Y, Ye Z, Liu X, et al. (2011) Detailed understanding of enhanced specific productivity in Chinese hamster ovary cells at low culture temperature. J. Biosci. Bioeng 111: 365–369. doi: 10.1016/j.jbiosc.2010.11.016
[48]  Nam J, Zhang F, Ermonval M, Linhardt R, Sharfstein S (2008) The effects of culture conditions on the glycosylation of secreted human placental alkaline phosphatase produced in Chinese hamster ovary cells. Biotechnol. Bioeng 100: 1178–1193. doi: 10.1002/bit.21853

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133