全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Autologous Tumor Lysate-Pulsed Dendritic Cell Immunotherapy with Cytokine-Induced Killer Cells Improves Survival in Gastric and Colorectal Cancer Patients

DOI: 10.1371/journal.pone.0093886

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gastric and colorectal cancers (GC and CRC) have poor prognosis and are resistant to chemo- and/or radiotherapy. In the present study, the prophylactic effects of dendritic cell (DC) vaccination are evaluated on disease progression and clinical benefits in a group of 54 GC and CRC patients treated with DC immunotherapy combined with cytokine-induced killer (CIK) cells after surgery with or without chemo-radiotherapy. DCs were prepared from the mononuclear cells isolated from patients using IL-2/GM-CSF and loaded with tumor antigens; CIK cells were prepared by incubating peripheral blood lymphocytes with IL-2, IFN-γ, and CD3 antibodies. The DC/CIK therapy started 3 days after low-dose chemotherapy and was repeated 3–5 times in 2 weeks as one cycle with a total of 188.3±79.8×106 DCs and 58.8±22.3×108 CIK cells. Cytokine levels in patients' sera before and after treatments were measured and the follow-up was conducted for 98 months to determine disease-free survival (DFS) and overall survival (OS). The results demonstrate that all cytokines tested were elevated with significantly higher levels of IFN-γ and IL-12 in both GC and CRC cohorts of DC/CIK treated patients. By Cox regression analysis, DC/CIK therapy reduced the risk of post-operative disease progression (p<0.01) with an increased OS (<0.01). These results demonstrate that in addition to chemo- and/or radiotherapy, DC/CIK immunotherapy is a potential effective approach in the control of tumor growth for post-operative GC and CRC patients.

References

[1]  Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90. doi: 10.3322/caac.20107
[2]  Ottoman RE, Langdon EA, Rochlin DB, Smart CR (1963) Side-Effects of Combined Radiation and Chemotherapy in the Treatment of Malignant Tumors. Radiology 81: 1014–1017.
[3]  Palesty JA, Wang W, Javle MM, Yang GY (2004) Side effects of therapy: case 3. Gastric cancer after radiotherapy of pediatric Hodgkin's disease. J Clin Oncol 22: 2507–2509. doi: 10.1200/jco.2004.09.168
[4]  Boulikas T, Vougiouka M (2004) Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncol Rep 11: 559–595. doi: 10.3892/or.11.3.559
[5]  Frankenberger B, Schendel DJ (2012) Third generation dendritic cell vaccines for tumor immunotherapy. Eur J Cell Biol 91: 53–58. doi: 10.1016/j.ejcb.2011.01.012
[6]  Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449: 419–426. doi: 10.1038/nature06175
[7]  Melief CJ (2007) Cancer: immune pact with the enemy. Nature 450: 803–804. doi: 10.1038/nature06363
[8]  Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, et al. (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2: 52–58. doi: 10.1038/nm0196-52
[9]  Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, et al. (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99: 1517–1526. doi: 10.1182/blood.v99.5.1517
[10]  Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, et al. (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4: 328–332. doi: 10.1038/nm0398-328
[11]  Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, et al. (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190: 1669–1678. doi: 10.1084/jem.190.11.1669
[12]  Fong L, Hou Y, Rivas A, Benike C, Yuen A, et al. (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 98: 8809–8814. doi: 10.1073/pnas.141226398
[13]  Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, et al. (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115: 3670–3679. doi: 10.1002/cncr.24429
[14]  Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, et al. (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363: 411–422. doi: 10.1056/nejmoa1001294
[15]  Higano CS, Small EJ, Schellhammer P, Yasothan U, Gubernick S, et al. (2010) Sipuleucel-T. Nat Rev Drug Discov 9: 513–514. doi: 10.1038/nrd3220
[16]  Huber ML, Haynes L, Parker C, Iversen P (2012) Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst 104: 273–279. doi: 10.1093/jnci/djr514
[17]  Frohlich MW (2012) Sipuleucel-T for the treatment of advanced prostate cancer. Semin Oncol 39: 245–252. doi: 10.1053/j.seminoncol.2012.02.004
[18]  Gutgemann S, Frank S, Strehl J, Schmidt-Wolf IG (2007) Cytokine-induced killer cells are type II natural killer T cells. Ger Med Sci 5: Doc07.
[19]  Mesiano G, Todorovic M, Gammaitoni L, Leuci V, Giraudo Diego L, et al. (2012) Cytokine-induced killer (CIK) cells as feasible and effective adoptive immunotherapy for the treatment of solid tumors. Expert Opin Biol Ther 12: 673–684. doi: 10.1517/14712598.2012.675323
[20]  Lu PH, Negrin RS (1994) A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol 153: 1687–1696.
[21]  Margolin KA, Negrin RS, Wong KK, Chatterjee S, Wright C, et al. (1997) Cellular immunotherapy and autologous transplantation for hematologic malignancy. Immunol Rev 157: 231–240. doi: 10.1111/j.1600-065x.1997.tb00986.x
[22]  Linn YC, Hui KM (2003) Cytokine-induced killer cells: NK-like T cells with cytotolytic specificity against leukemia. Leuk Lymphoma 44: 1457–1462. doi: 10.1080/1042819031000083082
[23]  Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG (2011) Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 137: 305–310. doi: 10.1007/s00432-010-0887-7
[24]  Thanendrarajan S, Nowak M, Abken H, Schmidt-Wolf IG (2011) Combining cytokine-induced killer cells with vaccination in cancer immunotherapy: more than one plus one? Leuk Res 35: 1136–1142. doi: 10.1016/j.leukres.2011.05.005
[25]  Gonzalez-Carmona MA, Marten A, Hoffmann P, Schneider C, Sievers E, et al. (2006) Patient-derived dendritic cells transduced with an a-fetoprotein-encoding adenovirus and co-cultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against hepatocellular carcinoma cells. Liver Int 26: 369–379. doi: 10.1111/j.1478-3231.2005.01235.x
[26]  Wongkajornsilp A, Sangsuriyong S, Hongeng S, Waikakul S, Asavamongkolkul A, et al. (2005) Effective osteosarcoma cytolysis using cytokine-induced killer cells pre-inoculated with tumor RNA-pulsed dendritic cells. J Orthop Res 23: 1460–1466. doi: 10.1016/j.orthres.2005.03.009.1100230632
[27]  Marten A, Greten T, Ziske C, Renoth S, Schottker B, et al. (2002) Generation of activated and antigen-specific T cells with cytotoxic activity after co-culture with dendritic cells. Cancer Immunol Immunother 51: 25–32. doi: 10.1007/s00262-001-0251-5
[28]  Marten A, Ziske C, Schottker B, Weineck S, Renoth S, et al. (2001) Transfection of dendritic cells (DCs) with the CIITA gene: increase in immunostimulatory activity of DCs. Cancer Gene Ther 8: 211–219. doi: 10.1038/sj.cgt.7700292
[29]  Su X, Zhang L, Jin L, Ye J, Guan Z, et al. (2010) Coculturing dendritic cells with zoledronate acid efficiently enhance the anti-tumor effects of cytokine-induced killer cells. J Clin Immunol 30: 766–774. doi: 10.1007/s10875-010-9434-1
[30]  Chan JK, Hamilton CA, Cheung MK, Karimi M, Baker J, et al. (2006) Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies: a preclinical study. Clin Cancer Res 12: 1859–1867. doi: 10.1158/1078-0432.ccr-05-2019
[31]  Sun Y, Chen J, Cai P, Hu YH, Zhong GC, et al. (2010) [Therapy of relapsed or refractory non-Hodgkin's lymphoma by antigen specific dendritic cells-activated lymphocytes]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 18: 219–223.
[32]  Leemhuis T, Wells S, Scheffold C, Edinger M, Negrin RS (2005) A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant 11: 181–187. doi: 10.1016/j.bbmt.2004.11.019
[33]  Li H, Wang C, Yu J, Cao S, Wei F, et al. (2009) Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy 11: 1076–1083. doi: 10.3109/14653240903121252
[34]  Pan Y, Zhang J, Zhou L, Zuo J, Zeng Y (2006) In vitro anti-tumor immune response induced by dendritic cells transfected with EBV-LMP2 recombinant adenovirus. Biochem Biophys Res Commun 347: 551–557. doi: 10.1016/j.bbrc.2006.05.214
[35]  Pan Y, Chefalo P, Nagy N, Harding C, Guo Z (2005) Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J Med Chem 48: 875–883. doi: 10.1021/jm0494422
[36]  Moiseyenko V, Imyanitov E, Danilova A, Danilov A, Baldueva I (2007) Cell technologies in immunotherapy of cancer. Adv Exp Med Biol 601: 387–393. doi: 10.1007/978-0-387-72005-0_42
[37]  Schadendorf D, Algarra SM, Bastholt L, Cinat G, Dreno B, et al. (2009) Immunotherapy of distant metastatic disease. Ann Oncol 20 Suppl 6vi41–50. doi: 10.1093/annonc/mdp253
[38]  Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, et al. (1999) A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5: 1331–1338.
[39]  O'Neill D, Bhardwaj N (2005) Exploiting dendritic cells for active immunotherapy of cancer and chronic infection. Methods Mol Med 109: 1–18. doi: 10.1385/1-59259-862-5:001
[40]  Madan RA, Schwaab T, Gulley JL (2012) Strategies for optimizing the clinical impact of immunotherapeutic agents such as sipuleucel-T in prostate cancer. J Natl Compr Canc Netw 10: 1505–1512.
[41]  O'Neill DW, Bhardwaj N (2007) Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Mol Biotechnol 36: 131–141. doi: 10.1007/s12033-007-0020-6
[42]  Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252. doi: 10.1038/32588
[43]  van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 64: 4357–4365. doi: 10.1158/0008-5472.can-04-0138
[44]  Schlom J (2012) Recent advances in therapeutic cancer vaccines. Cancer Biother Radiopharm 27: 2–5. doi: 10.1089/cbr.2012.1200
[45]  Marten A, Ziske C, Schottker B, Renoth S, Weineck S, et al. (2001) Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J Immunother 24: 502–510. doi: 10.1097/00002371-200111000-00007
[46]  Duru N, Fan M, Candas D, Menaa C, Liu HC, et al. (2012) HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res 18: 6634–6647. doi: 10.1158/1078-0432.ccr-12-1436
[47]  Li CD, Zhang WY, Li HL, Jiang XX, Zhang Y, et al. (2005) Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res 15: 539–547. doi: 10.1038/sj.cr.7290323
[48]  Beutler N, Hauka S, Niepel A, Kowalewski DJ, Uhlmann J, et al. (2013) A natural tapasin isoform lacking exon 3 modifies peptide loading complex function. Eur J Immunol 43: 1459–1469. doi: 10.1002/eji.201242725
[49]  Sharma A, Bode B, Wenger RH, Lehmann K, Sartori AA, et al. (2011) gamma-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One 6: e28217. doi: 10.1371/journal.pone.0028217

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133