[1] | Rovira AD (1990) Ecology, epidemiology and control of take-all, Rhizoctonia bare patch and cereal cyst nematode in wheat. Aust Plant Path 19: 101–111. doi: 10.1071/app9900101
|
[2] | Jeger MJ, Hide GA, van Den Boogert PHJF, Termorshuizen AJ, van Baarlen P (1996) Pathology and control of soil-borne fungal pathogens of potato. Potato Res 39: 437–469. doi: 10.1007/bf02357949
|
[3] | Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157: 417–430. doi: 10.1007/s10681-007-9380-z
|
[4] | Neate SM (1994) Soil and crop management practices that affect root diseases of crop plants. (CSIRO: East Melbourne), 96–106.
|
[5] | Hornby D (1983) Suppressive soils. Annu Rev Phytopathol 21: 65–85. doi: 10.1146/annurev.py.21.090183.000433
|
[6] | Fukui R (2003) Suppression of soilborne plant pathogens through community evolution of soil microorganisms. Microbes Environ18: 1–9. doi: 10.1264/jsme2.18.1
|
[7] | Gupta VVSR, Rovira AD, Roget DK (2011) Principles and management of soil biological factors for sustainable rainfed farming systems. In: Rainfed farming systems’ by P. Tow, I. Cooper, I. Partridge, C. Birch, pp. 149–184, Springer Science and Business Media.
|
[8] | Kinkel LL, Bakker MG, Schlatter DC (2011) A co-evolutionary framework for managing disease-suppressive soils. Annu Rev Plant Pathol 49: 47–67. doi: 10.1146/annurev-phyto-072910-095232
|
[9] | Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40: 309–347.
|
[10] | Baker K, Cook R (1974) Biological control of plant pathogens. San Francisco, CA. W.H. Freeman.
|
[11] | Roget DK (1995) Decline in root rot (Rhizoctonia solani AG-8) in wheat in a tillage and rotation experiment at Avon, South Australia. Aust J Exp Agr 35: 85–89. doi: 10.1071/ea9951009
|
[12] | Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42: 35–59. doi: 10.1146/annurev.phyto.42.040803.140408
|
[13] | Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, et al. (2006) Role of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in the Defense of Plant Roots. Plant Biol 9: 4–20. doi: 10.1055/s-2006-924473
|
[14] | Garbeva P, vanVeen JA, vanElsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppression. Annu Rev Phytopathol 42: 243–270. doi: 10.1146/annurev.phyto.42.012604.135455
|
[15] | Fernandez MR, Conner RL (2011) Root and crown rot of wheat. Prairie Soils Crops J 4: 151–157.
|
[16] | Wiseman BM, Neate SM, Ophel-Keller K, Smith SE (1996) Suppression of Rhizoctonia solani Anastamosis Group 8 in Australia and its biological nature. Soil Biol Biochem 28: 727–732. doi: 10.1016/0038-0717(95)00178-6
|
[17] | Roget DK, Coppi JA, Herdina, Gupta VVSR (1999) Assessment of suppression to Rhizoctonia solani in a range of soils across SE Australia. In: Proceedings of the First Australasian SoilBorne Disease symposium, Magarey RC (Ed.), pp. 129–130, BSES, Brisbane, Australia.
|
[18] | Gupta VVSR, Neate SM (1999) Root disease incidence-A simple phenomenon or a product of diverse microbial/biological interactions. In: Proceedings of the First Australasian SoilBorne Disease symposium, R.C. Magarey (Ed.), pp. 3–4, BSES, Brisbane, Australia.
|
[19] | Barnett SJ, Roget DK, Ryder MH (2006) Suppression of Rhizoctonia solani AG-8 induced disease on wheat by the interaction between Pantoea, Exiguobacterium and Microbacteria. Aust J Soil Res 44: 331–342. doi: 10.1071/sr05113
|
[20] | Paulitz TC (2006) Low input no-till cereal production in the Pacific Northwest of the US: The challenges of root diseases. Eur J Plant Pathol 115: 271–281. doi: 10.1007/s10658-006-9023-6
|
[21] | Postma J, Montanari M, van den Boogert PHJF (2003) Microbial enrichment to enhance the disease suppressive activity. Eur J Soil Biol 39: 157–163. doi: 10.1016/s1164-5563(03)00031-1
|
[22] | Gupta VVSR, Reddy NPE (2010) Response of soil microbial communities to stubble addition differs between disease suppressive and non-suppressive soils. Proceedings Sixth Australian Soilborne Diseases Symposium, 9–11 August 2010, G.R. Stirling (Ed.), p.50.
|
[23] | Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42: 136–144. doi: 10.1016/j.soilbio.2009.10.012
|
[24] | de Boer W, Verheggen P, Gunnewiek P, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69: 835–844. doi: 10.1128/aem.69.2.835-844.2003
|
[25] | Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, et al. (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40: 1–10. doi: 10.1016/j.soilbio.2007.07.002
|
[26] | Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66: 1–102. doi: 10.1016/s0065-2113(08)60425-3
|
[27] | Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17: 478–486. doi: 10.1016/j.tplants.2012.04.001
|
[28] | Van Elsas JD, Costa R, Jansson J, Sjoling S, Balley M, et al. (2008) The metagenomics of disease suppressive soil – experiences from the METACONTROL project. Trends Biotechnol 26: 591–601. doi: 10.1016/j.tibtech.2008.07.004
|
[29] | Benitez M, McSpadden Gardner BB (2009) Linking sequence to function in soil bacteria: Sequence-derived isolation of novel bacteria contributing to soilborne plant disease suppression. Appl Environ Microb. 75: 915–924. doi: 10.1128/aem.01296-08
|
[30] | Mendes R, Kruijt M, deBruijn I, Dekkers E, van derVoort M, et al. (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097–1100. doi: 10.1126/science.1203980
|
[31] | Rosenzweig N, Tiedje JM, Quensen JF, Meng Q, Hao JJ (2012) Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. Plant Dis 96: 718–725. doi: 10.1094/pdis-07-11-0571
|
[32] | Smith SE, Read DJ (2008) Mycorrhizal symbiosis 3rd ed. Academic Press. 800 p.
|
[33] | Woo SL, Lorito M. Exploiting the interactions between fungal antagonists,pathogens and the plant for biocontrol. In: Vurro M, Gressel J, editors. Novel biotechnologies for biocontrol agent enhancement and management. Amsterdam:IOS Springer Press; 2007. p. 107–30.
|
[34] | Nelson EB (2004) Biological Control of Oomycete and Fungal Pathogens. In: Goodman R.M, ed. Encyclopedia of Plant and Crop Science. Marcel Dekker, Inc. pp 137–140.
|
[35] | Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M (2012) Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 46: 26–32. doi: 10.1016/j.soilbio.2011.11.010
|
[36] | Cook A, Wilhelm N, Dyson C (2008) Survey of soil-borne disease suppression to Rhizoctonia solani in low rainfall farming systems on upper Eyre Peninsula, South Australia. Proceedings of the 14th ASA Conference, 21–25 September 2008, Adelaide, South Australia.
|
[37] | Gupta VVSR, Roget DK, Coppi JC, Kroker SK (2009) Soil type and rotation effects on the suppression of Rhizoctonia bare patch disease in Wheat. In: 5th Australasian SoilBorne Disease Symposium – Extended abstracts, Thredbo, NSW, pp. 85–87.
|
[38] | Northcote KH, Hubble GD, Isbell RF, Thompson C.H, Bettenay E (1975) 'A Description of Australian Soils.'(CSIRO: East Melbourne.).
|
[39] | FAO. (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. Rome: Food and Agriculture Organization of the United Nations.
|
[40] | Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69: 3593–3599. doi: 10.1128/aem.69.6.3593-3599.2003
|
[41] | Ophel-Keller K, McKay A, Hartley D, Herdina, Curran J (2008) Development of a routine DNA-based testing service for soilborne diseases in Australia. Australasian Pl Pathol 37: 243–253. doi: 10.1071/ap08029
|
[42] | Vainio E J, Hantula J (2000) Direct analysis of wood inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104: 927–936. doi: 10.1017/s0953756200002471
|
[43] | Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, et al. (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results. J Microbiol Methods. 69: 470–479. doi: 10.1016/j.mimet.2007.02.014
|
[44] | Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes –application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113–118. doi: 10.1111/j.1365-294x.1993.tb00005.x
|
[45] | White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds.), PCR Protocols: a Guide to Methods and Applications. New York: Academic Press. pp. 315–322.
|
[46] | John S, Hopple J, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol Phylogenet Evol 13: 1–19. doi: 10.1006/mpev.1999.0634
|
[47] | Schnare MN, Damberger SH, Gray MW, Gutell RR (1996) Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. J Mol Biol 256: 701–719. doi: 10.1006/jmbi.1996.0119
|
[48] | Liu K-L, Porras-Alfaro A, Kuske CR, Elchorst SA, Xie G (2012) Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl Environ Microb 78: 1523–1533. doi: 10.1128/aem.06826-11
|
[49] | Penton CR, St. Louis D, Cole JR, Luo Y, Wu L, et al. (2013) Fungal diversity in permafrost and tallgrass prairie soils under experimental warming conditions. Appl Environ Microb 79: 7063–7072. doi: 10.1128/aem.01702-13
|
[50] | Porter TM, Golding GB (2012) Factors that affect large subunit ribosomal amplicon sequencing studies of fungal communities: Classification method, primer choice, and error. PLOS One 7(4): 1–12. doi: 10.1371/journal.pone.0035749
|
[51] | Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth.
|
[52] | Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18: 117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x
|
[53] | Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26: 32–46. doi: 10.1046/j.1442-9993.2001.01070.x
|
[54] | Warwick RM, Platt HM, Clarke KR, Agard J, Gobin J (1990) Analysis of macrobenthic and meiobenthic community structure in relationship to pollution and disturbance in Hamilton Harbour, Bermuda. J Exp Mar Biol Ecol 138: 119–142. doi: 10.1016/0022-0981(90)90180-k
|
[55] | Shannon CE, Weaver W (1949) The mathematical theory of communication. Urbana: The University of Illinois Press. 117 p.
|
[56] | Pielou EC (1975) Ecological Diversity. New York: Wiley Press. 165 p.
|
[57] | Suryanarayanan TS, Murali T, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80: 818–826. doi: 10.1139/b02-069
|
[58] | Macia-Vincente JG, Jansson H, Mendgen K, Lopez-Llorca LV (2008) Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Can J Microbiol 54: 600–609. doi: 10.1139/w08-047
|
[59] | Park J-H, Chio G-J, Lee S-W, Lee H-B, Kim K-M, et al. (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abie holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biot 15: 112–117.
|
[60] | Jang Y-W, Lee I-K, Kim Y-S, Lee S, Lee H-J, et al. (2007) Xylarinic acids A and B, new antifungal polypropionates from the fruiting body of Xylaria polymorpha. J Antibiot 60: 696–699. doi: 10.1038/ja.2007.89
|
[61] | Schroers H-J (2001) A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriacea) and its Clonostachys anamorphs. Stud Mycol 46: 1–214. doi: 10.1017/s0269915x03272177
|
[62] | Moller WJ, Kasimatis AN (1978) Dieback of grapevines caused by Eutypa armeniacae. Plant Dis Rep 62: 254–258.
|
[63] | Hyde KD, Bussaban B, Paulas B, Crous PW, Lee S, et al. (2007) Diversity of saprobic microfungi. Biodivers Conserv 16: 7–35. doi: 10.1007/s10531-006-9119-5
|
[64] | Klich MA (1998) Soil fungi of some low-altitude desert cotton fields and ability of their extracts to inhibit Aspergillus flavus. Mycopathologia 142: 97–100.
|
[65] | Vilich V, Dolfen M, Sikora RA (1998) Chaetomium spp. Colonization of barley following seed treatment and its effect on plant growth and Erysiphe graminis f. sp. Hordei disease severity. J Plant Dis Protect 105: 130–139.
|
[66] | Shiono Y, Hatakeyama T, Murayama T, Koseki T (2012) Polyketide metabolites from the endophytic fungus Microdiplodia sp. KS 75–1. Nat Prod Commun 7: 1065–1068.
|
[67] | Kim H-Y, Choi GJ, Lee HB, Lee S-W, Lim HK, et al. (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44: 332–337. doi: 10.1111/j.1472-765x.2006.02093.x
|
[68] | Paulitz TC, Park CS, Baker R (1987) Biological control of Fusarium wilt of cucumber with non pathogenic isolates of Fusarium oxysporum. Can J Microbiol 33: 349–353. doi: 10.1139/m87-061
|
[69] | Wellacher M (1991) Die Pilz kolonisation von Maispflanzen. Diplomarbeit. Baarn, The Netherlands. Centraalbureau voor Schimmelcultures.
|
[70] | Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microb Biot 23: 565–572. doi: 10.1007/s11274-006-9266-6
|
[71] | Pan JJ, Baumgarten AM, May G (2008) Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). New Phytol 178: 147–156. doi: 10.1111/j.1469-8137.2007.02350.x
|
[72] | Larran S, Perelló A, Simón MR, Moreno V (2002) Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microb Biot 18: 683–686.
|
[73] | Xu L, Ravnskov S, Larson J, Nicolaisen M (2012) Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol Ecol 82: 736–745. doi: 10.1111/j.1574-6941.2012.01445.x
|
[74] | Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68: 1–13. doi: 10.1111/j.1574-6941.2009.00654.x
|
[75] | Gupta VVSR, McKay A, Diallo S, Smith D, Cook A, et al.. (2012) Rhizoctonia solani AG8 inoculm levels in Australian soils are influenced by crop rotation and summer rainfall. 7th Australasian Soilborne Diseases Symposium, Sept 17–20, Freemantle, WA.
|
[76] | Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defence pathways in Arabidopsis thaliana. Mol Plant Microbe In 21: 208–218. doi: 10.1094/mpmi-21-2-0208
|
[77] | Buée M, Reich M, Murat C, Morin E, Nilsson RH, et al. (2009) 454 pyrosequencing analyses of forest soils reveals unexpectedly high fungal diversity. New Phytol 184: 449–456. doi: 10.1111/j.1469-8137.2009.03003.x
|
[78] | Roper MM, Gupta VVSR (1995) Management practices and soil biota. Aust J Soil Res 33: 321–339. doi: 10.1071/sr9950321
|
[79] | Garnica S, Riess K, Bauer R, Oberwinkler F, Weiss M (2013) Phylogenetic diversity and structure of sebacinoid fungi associated with plant communities along an altitudinal gradient. FEMS Microbiol Ecol 83: 265–278. doi: 10.1111/j.1574-6941.2012.01473.x
|
[80] | Rousk J, B??th E, Brookes PC, Lauber CL, Lozupone C, et al. (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4: 1340–1351. doi: 10.1038/ismej.2010.58
|
[81] | Loss A, Pereira MG, Perin A, Coutinho FS, Anios LHC (2012) Particulate organic matter in soil under different systems in the Brazilian Cerrado. Soil Res 50: 685–693. doi: 10.1071/sr12196
|
[82] | Cambarella CA, Elliott ET (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56: 777–783. doi: 10.2136/sssaj1992.03615995005600030017x
|
[83] | Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, et al. (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoids roots across contrasting soil types. Appl Environ Microb 77: 5934–5944. doi: 10.1128/aem.05255-11
|
[84] | Weber CF, Vilgalys R, Kuske CR (2013) Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon. Front Microbiol 4: 78. doi: 10.3389/fmicb.2013.00078
|
[85] | Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, et al.. (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLOS One 7(4): e34847. doi:10.1371/journal.pone.0034847.
|
[86] | McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL (2012) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63: 804–812. doi: 10.1007/s00248-011-9973-x
|
[87] | Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 1359–1361. doi: 10.1126/science.1086940
|
[88] | O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71: 5544–5550. doi: 10.1128/aem.71.9.5544-5550.2005
|
[89] | McKay A, Roget D, Hannam R, Ophel-Keller K (2008) Root disease risk management resource manual. A. McKay, D. Roget, R. Hannam, K. Ophel-Keller eds. PIRSA publishing. 114 pp.
|
[90] | Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, et al. (2007) Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol Biochem 39: 1–23. doi: 10.1016/j.soilbio.2006.07.001
|
[91] | Gupta VVSR, Reddy NPE (2010) Response of soil microbial communities to stubble addition differs between disease suppressive and non-suppressive soils, Proceedings Sixth Australian Soilborne Diseases Symposium, 9–11 August 2010, G.R. Stirling (Ed.), p.50.
|