全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Performance Evaluation of Kits for Bisulfite-Conversion of DNA from Tissues, Cell Lines, FFPE Tissues, Aspirates, Lavages, Effusions, Plasma, Serum, and Urine

DOI: 10.1371/journal.pone.0093933

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA methylation analyses usually require a preceding bisulfite conversion of the DNA. The choice of an appropriate kit for a specific application should be based on the specific performance requirements with regard to the respective sample material. In this study, the performance of nine kits was evaluated: EpiTect Fast FFPE Bisulfite Kit, EpiTect Bisulfite Kit, EpiTect Fast DNA Bisulfite Kit (Qiagen), EZ DNA Methylation-Gold Kit, EZ DNA Methylation-Direct Kit, EZ DNA Methylation-Lightning Kit (Zymo Research), innuCONVERT Bisulfite All-In-One Kit, innuCONVERT Bisulfite Basic Kit, innuCONVERT Bisulfite Body Fluids Kit (Analytik Jena). The kit performance was compared with regard to DNA yield, DNA degradation, DNA purity, conversion efficiency, stability and handling using qPCR, UV, clone sequencing, HPLC, and agarose gel electrophoresis. All kits yielded highly pure DNA suitable for PCR analyses without PCR inhibition. Significantly higher yields were obtained when using the EZ DNA Methylation-Gold Kit and the innuCONVERT Bisulfite kits. Conversion efficiency ranged from 98.7% (EpiTect Bisulfite Kit) to 99.9% (EZ DNA Methylation-Direct Kit). The inappropriate conversion of methylated cytosines to thymines varied between 0.9% (innuCONVERT Bisulfite kits) and 2.7% (EZ DNA Methylation-Direct Kit). Time-to-result ranged from 131 min (innuCONVERT kits) to 402 min (EpiTect Bisulfite Kit). Hands-on-time was between 66 min (EZ DNA Methylation-Lightning Kit) and 104 min (EpiTect Fast FFPE and Fast DNA Bisulfite kits). Highest yields from formalin-fixed and paraffin-embedded (FFPE) tissue sections without prior extraction were obtained using the innuCONVERT Bisulfite All-In-One Kit while the EZ DNA Methylation-Direct Kit yielded DNA with only low PCR-amplifiability. The innuCONVERT Bisulfite All-In-One Kit exhibited the highest versatility regarding different input sample materials (extracted DNA, tissue, FFPE tissue, cell lines, urine sediment, and cellular fractions of bronchial aspirates, pleural effusions, ascites). The innuCONVERT Bisulfite Body Fluids Kit allowed for the analysis of 3 ml plasma, serum, ascites, pleural effusions and urine.

References

[1]  Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 13: 484–492. doi: 10.1038/nrg3230
[2]  Shen H, Laird PW (2013) Interplay between the cancer genome and epigenome. Cell. 153: 38–55. doi: 10.1016/j.cell.2013.03.008
[3]  Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, et al. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 343: 1350–1354. doi: 10.1056/nejm200011093431901
[4]  Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, et al. (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol. 6: 39–51. doi: 10.1038/nrneurol.2009.197
[5]  Stewart GD, Van Neste L, Delvenne P, Delrée P, Delga A, et al. (2013) Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 189: 1110–1116. doi: 10.1016/j.juro.2012.08.219
[6]  Ba?ez LL, Sun L, van Leenders GJ, Wheeler TM, Bangma CH, et al. (2010) Multicenter clinical validation of PITX2 methylation as a prostate specific antigen recurrence predictor in patients with post-radical prostatectomy prostate cancer. J Urol. 184: 149–156. doi: 10.1016/j.juro.2010.03.012
[7]  Dietrich D, Hasinger O, Ba?ez LL, Sun L, van Leenders GJ, et al. (2013) Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn. 15: 270–279. doi: 10.1016/j.jmoldx.2012.11.002
[8]  Weiss G, Cottrell S, Distler J, Schatz P, Kristiansen G, et al. (2009) DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol. 181: 1678–1685. doi: 10.1016/j.juro.2008.11.120
[9]  Schatz P, Dietrich D, Koenig T, Burger M, Lukas A, et al. (2010) Development of a diagnostic microarray assay to assess the risk of recurrence of prostate cancer based on PITX2 DNA methylation. J Mol Diagn. 12: 345–353. doi: 10.2353/jmoldx.2010.090088
[10]  Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, et al. (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 63: 317–325. doi: 10.1136/gutjnl-2012-304149
[11]  Kneip C, Schmidt B, Seegebarth A, Weickmann S, Fleischhacker M, et al. (2011) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol. 6: 1632–1638. doi: 10.1097/jto.0b013e318220ef9a
[12]  Schmidt B, Liebenberg V, Dietrich D, Schlegel T, Kneip C, et al. (2010) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer. 10: 600. doi: 10.1186/1471-2407-10-600
[13]  Dietrich D, Kneip C, Raji O, Liloglou T, Seegebarth A, et al. (2012) Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int J Oncol. 40: 825–832. doi: 10.3892/ijo.2011.1264
[14]  Ilse P, Biesterfeld S, Pomjanski N, Fink C, Schramm M (2013) SHOX2 DNA methylation is a tumour marker in pleural effusions. Cancer Genomics Proteomics. 10: 217–223.
[15]  Dietrich D, Jung M, Puetzer S, Leisse A, Holmes EE, et al. (2013) Diagnostic and Prognostic Value of SHOX2 and SEPT9 DNA Methylation and Cytology in Benign, Paramalignant and Malignant Pleural Effusions. PLoS One. 8: e84225. doi: 10.1371/journal.pone.0084225
[16]  Darwiche K, Zarogoulidis P, Baehner K, Welter S, Tetzner R, et al. (2013) Assessment of SHOX2 methylation in EBUS-TBNA specimen improves accuracy in lung cancer staging. Ann Oncol. 24: 2866–2870. doi: 10.1093/annonc/mdt365
[17]  Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 89: 1827–1831. doi: 10.1073/pnas.89.5.1827
[18]  Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, et al. (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 7: 461–465. doi: 10.1038/nmeth.1459
[19]  Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7: Unit 7.91–17. doi: 10.1002/0471142727.mb0709s91
[20]  Millar DS, Warnecke PM, Melki JR, Clark SJ (2002) Methylation sequencing from limiting DNA: embryonic, fixed, and microdissected cells. Methods. 27: 108–113. doi: 10.1016/s1046-2023(02)00061-0
[21]  Boyd VL, Zon G (2004) Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal Biochem. 326: 278–280. doi: 10.1016/j.ab.2003.11.020
[22]  Hayatsu H, Negishi K, Shiraishi M (2004) Accelerated bisulfite-deamination of cytosine in the genomic sequencing procedure for DNA methylation analysis. Nucleic Acids Symp Ser (Oxf). 48: 261–262. doi: 10.1093/nass/48.1.261
[23]  Hayatsu H, Shiraishi M, Negishi K (2008) Bisulfite modification for analysis of DNA methylation. Curr Protoc Nucleic Acid Chem. Chapter 6: Unit 6.10.
[24]  Shiraishi M, Hayatsu H (2004) High-speed conversion of cytosine to uracil in bisulfite genomic sequencing analysis of DNA methylation. DNA Res. 11: 409–415. doi: 10.1093/dnares/11.6.409
[25]  Dietrich D, Uhl B, Sailer V, Holmes EE, Jung M, et al. (2013) Improved PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by overcoming PCR inhibition. PLoS One. 8: e77771. doi: 10.1371/journal.pone.0077771
[26]  deVos T, Tetzner R, Model F, Weiss G, Schuster M, et al. (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem. 55: 1337–1346. doi: 10.1373/clinchem.2008.115808
[27]  Genereux DP, Johnson WC, Burden AF, St?ger R, Laird CD (2008) Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res. 36: e150. doi: 10.1093/nar/gkn691
[28]  Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, et al. (2002) Identification and resolution of artifacts in bisulfite sequencing. Methods. 27: 101–107. doi: 10.1016/s1046-2023(02)00060-9
[29]  Raizis AM, Schmitt F, Jost JP (1995) A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Anal Biochem. 226: 161–166. doi: 10.1006/abio.1995.1204
[30]  Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29: E65–65. doi: 10.1093/nar/29.13.e65
[31]  Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett. 17: 1912–1915. doi: 10.1016/j.bmcl.2007.01.040
[32]  Hayatsu H (2008) The bisulfite genomic sequencing used in the analysis of epigenetic states, a technique in the emerging environmental genotoxicology research. Mutat Res. 659: 77–82. doi: 10.1016/j.mrrev.2008.04.003
[33]  Jin L, Wang W, Hu D, Lü J (2013) The conversion of protonated cytosine-SO3(-) to uracil-SO3(-): insights into the novel induced hydrolytic deamination through bisulfite catalysis. Phys Chem Chem Phys. 15: 9034–9042. doi: 10.1039/c3cp51275d
[34]  Niland EE, McGuire A, Cox MH, Sandusky GE (2012) High quality DNA obtained with an automated DNA extraction method with 70+ year old formalin-fixed celloidin-embedded (FFCE) blocks from the indiana medical history museum. Am J Transl Res. 4: 198–205. doi: 10.1158/1538-7445.am2012-3203
[35]  Mostegl MM, Richter B, Dinhopl N, Weissenb?ck H (2011) Influence of prolonged formalin fixation of tissue samples on the sensitivity of chromogenic in situ hybridization. J Vet Diagn Invest. 23: 1212–1216. doi: 10.1177/1040638711425584
[36]  Bonin S, Hlubek F, Benhattar J, Denkert C, Dietel M, et al. (2010) Multicentre validation study of nucleic acids extraction from FFPE tissues. Virchows Arch. 457: 309–317. doi: 10.1007/s00428-010-0917-5
[37]  Taga M, Eguchi H, Shinohara T, Takahashi K, Ito R, et al. (2013) Improved PCR amplification for molecular analysis using DNA from long-term preserved formalin-fixed, paraffin-embedded lung cancer tissue specimens. Int J Clin Exp Pathol. 6: 76–79.
[38]  Schwarzenbach H, Alix-Panabières C, Müller I, Letang N, Vendrell JP, et al. (2009) Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res. 15: 1032–1038. doi: 10.1158/1078-0432.ccr-08-1910
[39]  Stemmer C, Beau-Faller M, Pencreac’h E, Guerin E, Schneider A, et al. (2003) Use of magnetic beads for plasma cell-free DNA extraction: toward automation of plasma DNA analysis for molecular diagnostics. Clin Chem. 49: 1953–1935. doi: 10.1373/clinchem.2003.020750
[40]  Lee TH, Montalvo L, Chrebtow V, Busch MP (2001) Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion. 41: 276–282. doi: 10.1046/j.1537-2995.2001.41020276.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133