全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Comparison of VILIP-1 and VILIP-3 Binding to Phospholipid Monolayers

DOI: 10.1371/journal.pone.0093948

Full-Text   Cite this paper   Add to My Lib

Abstract:

The neuronal calcium sensor proteins Visinin-like Proteins 1 (VILIP-1) and 3 (VILIP-3) are effectors of guanylyl cyclase and acetyl choline receptors, and transduce calcium signals in the brain. The “calcium-myristoyl” switch, which involves a post-translationally added myristoyl moiety and calcium binding, is thought to regulate their membrane binding capacity and therefore, play a critical role in their mechanism of action. In the present study, we investigated the effect of membrane composition and solvent conditions on the membrane binding mechanisms of both VILIPs using lipid monolayers at the air/buffer interface. Results based on comparison of the adsorption kinetics of the myristoylated and non-myristoylated proteins confirm the pivotal role of calcium and the exposed myristol moiety for sustaining the membrane-bound state of both VILIPs. However, we also observed binding of both VILIP proteins in the absence of calcium and/or myristoyl conjugation. We propose a two-stage membrane binding mechanism for VILIP-1 and VILIP-3 whereby the proteins are initially attracted to the membrane surface by electrostatic interactions and possibly by specific interactions with highly negatively charged lipids head groups. The extrusion of the conjugated myristoyl group, and the subsequent anchoring in the membrane constitutes the second stage of the binding mechanism, and ensures the sustained membrane-bound form of these proteins.

References

[1]  Braunewell KH, Gundelfinger ED (1999) Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell and Tissue Research 295: 1–12. doi: 10.1007/s004410051207
[2]  Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochemical Journal 353: 1–12. doi: 10.1042/0264-6021:3530001
[3]  Braunewell KH, Riederer P, Spilker C, Gundelfinger ED, Bogerts B, et al. (2001) Abnormal localization of two neuronal calcium sensor proteins, visinin-like proteins (VILIPs)-1 and -3, in neocortical brain areas of Alzheimer disease patients. Dementia and Geriatric Cognitive Disorders 12: 110–116. doi: 10.1159/000051244
[4]  Braunewell KH (2012) The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer's disease — old wine in new bottles. Frontiers in Molecular Neuroscience 5: 1–12. doi: 10.3389/fnmol.2012.00020
[5]  Bernstein HG, Braunewell KH, Spilker C, Danos P, Baumann B, et al. (2002) Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia. Neuroreport 13: 393–396. doi: 10.1097/00001756-200203250-00006
[6]  Mahloogi H, Gonzalez-Guerrico AM, De Cicco RL, Bassi DE, Goodrow T, et al. (2003) Overexpression of the calcium sensor visinin-like protein-1 leads to a cAMP-mediated decrease of in vivo and in vitro growth and invasiveness of squamous cell carcinoma cells. Cancer Research 63: 4997–5004.
[7]  Lenz SE, Braunewell K-H, Weise C, Nedlina-Chittka A, Gundelfinger ED (1996) The Neuronal EF-Hand Ca2+-Binding Protein VILIP: Interaction with Cell Membrane and Actin-Based Cytoskeleton. Biochemical and Biophysical Research Communications 225: 1078–1083. doi: 10.1006/bbrc.1996.1298
[8]  Spilker C, Richter K, Smalla KH, Gundelfinger ED, Braunewell KH (1999) VILIP-3 - A member of the intracellular neuronal calciumsensor-family - Is expressed in cerebellar purkinje cells and shows a calcium-myristoyl-switch. Journal of Neurochemistry 73: S206–S206.
[9]  Ladant D (1995) Calcium membrane-binding properties of bovine neurocalcin-delta expressed in Escherichia-Coli. Journal of Biological Chemistry 270: 3179–3185.
[10]  Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, et al. (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389: 198–202. doi: 10.1038/38310
[11]  Lin L, Braunewell KH, Gundelfinger ED, Anand R (2002) Functional analysis of calcium-binding EF-hand motifs of visinin-like protein-1. Biochemical and Biophysical Research Communications 296: 827–832. doi: 10.1016/s0006-291x(02)00943-9
[12]  Braunewell KH, Brackmann M, Schaupp M, Spilker C, Anand R, et al. (2001) Intracellular neuronal calcium sensor (NCS) protein VILIP-1 modulates cGMP signalling pathways in transfected neural cells and cerebellar granule neurones. Journal of Neurochemistry 78: 1277–1286. doi: 10.1046/j.1471-4159.2001.00506.x
[13]  Sallese M, Iacovelli L, Cumashi A, Capobianco L, Cuomo L, et al. (2000) Regulation of G protein-coupled receptor kinase subtypes by calcium sensor proteins. Biochimica Et Biophysica Acta-Molecular Cell Research 1498: 112–121. doi: 10.1016/s0167-4889(00)00088-4
[14]  Boekhoff I, Braunwell KH, Andreini I, Breer H, Gundelfinger E (1997) The calcium-binding protein VILIP in olfactory neurons: Regulation of second messenger signaling. European Journal of Cell Biology 72: 151–158.
[15]  Spilker C, Gundelfinger ED, Braunewell KH (2002) Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: from subcellular localization to cellular function. Biochimica Et Biophysica Acta-Proteins and Proteomics 1600: 118–127. doi: 10.1016/s1570-9639(02)00452-1
[16]  Bernstein HG, Baumann B, Danos P, Diekmann S, Bogerts B, et al. (1999) Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. Journal of Neurocytology 28: 655–662.
[17]  Spilker C, Braunewell KH (2003) Calcium-myristoyl switch, subcellular localization, and calcium dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Molecular and Cellular Neuroscience 24: 766–778. doi: 10.1016/s1044-7431(03)00242-2
[18]  Spilker C, Dresbach T, Braunewell KH (2002) Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons. Journal of Neuroscience 22: 7331–7339. doi: 10.1016/s1044-7431(03)00242-2
[19]  Jheng FF, Wang LK, Lee L, Chang LS (2006) Functional contribution of Ca2+ and Mg2+ to the intermolecular interaction of visinin-like proteins. Protein Journal 25: 250–256. doi: 10.1007/s10930-006-9008-5
[20]  Li CM, Pan WS, Braunewell KH, Ames JB (2011) Structural analysis of Mg(2+) and Ca(2+) binding, myristoylation, and dimerization of the Neuronal Calcium Sensor and Visinin-like Protein 1 (VILIP-1). Journal of Biological Chemistry 286: 6354–6366. doi: 10.1074/jbc.m110.173724
[21]  Maget-Dana R (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1462: 109–140. doi: 10.1016/s0005-2736(99)00203-5
[22]  Guillemin Y, Lopez J, Gimenez D, Fuertes G, Valero JG, et al. (2010) Active Fragments from Pro- and Antiapoptotic BCL-2 Proteins Have Distinct Membrane Behavior Reflecting Their Functional Divergence. Plos One 5(2): e9066. doi: 10.1371/journal.pone.0009066
[23]  Girard-Egrot A, Chauvet J-P, Gillet G, Moradi-Améli M (2004) Specific Interaction of the Antiapoptotic Protein Nr-13 with Phospholipid Monolayers is Prevented by the BH3 Domain of Bax. Journal of Molecular Biology 335: 321–331. doi: 10.1016/j.jmb.2003.10.028
[24]  Braunewell KH, Paul B, Altarche-Xifro W, Noack C, Lange K, et al. (2010) Interactions of Visinin-like Proteins with Phospho-inositides. Australian Journal of Chemistry 63: 350–356. doi: 10.1071/ch09355
[25]  Peitzsch RM, McLaughlin S (1993) Binding of acylated peptides and fatty acids to phospholipid vesicles: Pertinence to myristoylated proteins. Biochemistry 32: 10436–10443. doi: 10.1021/bi00090a020
[26]  Cox JA, Durussel I, Comte M, Nef S, Nef P, et al. (1994) Cation-binding and conformational-changes in VILIP and NCS-1, 2 neuron-specific calcium binding proteins. Journal of Biological Chemistry 269: 32807–32813.
[27]  Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification 41: 207–234. doi: 10.1016/j.pep.2005.01.016
[28]  Duronio RJ, Jackson-Machelski E, Heuckeroth RO, Olins PO, Devine CS, et al. (1990) Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc Natl Acad Sci U S A 87: 1506–1510. doi: 10.1073/pnas.87.4.1506
[29]  Calvez P, Demers E, Boisselier E, Salesse C (2011) Analysis of the Contribution of Saturated and Polyunsaturated Phospholipid Monolayers to the Binding of Proteins. Langmuir 27: 1373–1379. doi: 10.1021/la104097n
[30]  Wang CK, Simon A, Jessen CM, Oliveira CLP, Mack L, et al. (2011) Divalent cations and redox conditions regulate the molecular structure and function of Visinin-Like Protein-1. Plos One 6(11): e26793. doi: 10.1371/journal.pone.0026793
[31]  Desmeules P, Penney SE, Desbat B, Salesse C (2007) Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers. Biophysical Journal 93: 2069–2082. doi: 10.1529/biophysj.106.103481
[32]  Bussieres S, Cantin L, Desbat B, Salesse C (2012) Binding of a Truncated Form of Lecithin:Retinol Acyltransferase and Its N- and C-Terminal Peptides to Lipid Monolayers. Langmuir 28: 3516–3523. doi: 10.1021/la203896n
[33]  Chen CK, Inglese J, Lefkowitz RJ, Hurley JB (1995) Ca2+-dependent interaction of recoverin with rhodopsin kinase. Journal of Biological Chemistry 270: 18060–18066. doi: 10.1074/jbc.270.30.18060
[34]  Senin II, Churumova VA, Philippov PP, Koch K-W (2007) Membrane binding of the neuronal calcium sensor recoverin - modulatory role of the charged carboxy-terminus. BMC biochemistry 8: 24. doi: 10.1186/1471-2091-8-24
[35]  Antonny B (2011) Mechanisms of membrane curvature sensing. Annual Review of Biochemistry 80: 101–123. doi: 10.1146/annurev-biochem-052809-155121
[36]  O'Callaghan DW, Haynes LP, Burgoyne RD (2005) High-affinity interaction of the N-terminal myristoylation motif of the neuronal calcium sensor protein hippocalcin with phosphatidylinositol 4,5-bisphosphate. Biochem J 391: 231–238. doi: 10.1042/bj20051001
[37]  Chen KC, Wang LK, Chang LS (2009) Regulatory elements and functional implication for the formation of dimeric visinin-like protein-1. Journal of Peptide Science 15: 89–94. doi: 10.1002/psc.1097
[38]  Meyer T, York JD (1999) Calcium-myristoyl switches turn on new lights. Nature Cell Biology 1: E93–E95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133