全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Experimental Infections with Mycoplasma agalactiae Identify Key Factors Involved in Host-Colonization

DOI: 10.1371/journal.pone.0093970

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs.

References

[1]  Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62: 1094–1156.
[2]  Sirand-Pugnet P, Citti C, Barré A, Blanchard A (2007) Evolution of mollicutes: down a bumpy road with twists and turns. Res Microbiol 158: 754–766. doi: 10.1016/j.resmic.2007.09.007
[3]  Razin S, Hayflick L (2010) Highlights of mycoplasma research - an historical perspective. Biologicals 38: 183–190. doi: 10.1016/j.biologicals.2009.11.008
[4]  Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165–2169. doi: 10.1126/science.286.5447.2165
[5]  Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, et al. (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103: 425–430. doi: 10.1073/pnas.0510013103
[6]  Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329: 52–56. doi: 10.1126/science.1190719
[7]  Bergonier D, Berthelot X, Poumarat F (1997) Contagious agalactia of small ruminants: current knowledge concerning epidemiology, diagnosis and control. Rev Sci Tech Off Int Epizoot 16: 848–873.
[8]  Corrales JC, Esnal A, De la Fe C, Sánchez A, Assun?ao P, et al. (2007) Contagious agalactia in small ruminants. Small Rum Res 68: 154–166. doi: 10.1016/j.smallrumres.2006.09.010
[9]  World Organisation for Animal Health (2012) OIE Manual of Diagnostic Tests and Vaccines for Terrestrial AnimalsSeventh Edition. OIE Biological Standards Commission, Paris, France. Available: http://www.oie.int/en/international-stan?dard-setting/terrestrial-manual/access-o?nline/.
[10]  Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A, et al. (2007) Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 3: e75. doi: 10.1371/journal.pgen.0030075
[11]  Nicholas RAJ (2011) Bovine mycoplasmosis: silent and deadly. Vet Rec 168: 459–462. doi: 10.1136/vr.d2468
[12]  Citti C, Nouvel LX, Baranowski E (2010) Phase and antigenic variation in mycoplasmas. Future Microbiol 5: 1073–1085. doi: 10.2217/fmb.10.71
[13]  Nouvel LX, Marenda M, Sirand-Pugnet P, Sagné E, Glew M, et al. (2009) Occurrence, plasticity, and evolution of the vpma gene family, a genetic system devoted to high-frequency surface variation in Mycoplasma agalactiae. J Bacteriol 191: 4111–4121. doi: 10.1128/jb.00251-09
[14]  Cacciotto C, Addis MF, Coradduzza E, Carcangiu L, Nuvoli AM, et al. (2013) Mycoplasma agalactiae MAG_5040 is a Mg2+-dependent, sugar-nonspecific SNase recognised by the host humoral response during natural infection. PLoS ONE 8: e57775. doi: 10.1371/journal.pone.0057775
[15]  Chopra-Dewasthaly R, Zimmermann M, Rosengarten R, Citti C (2005) First steps towards the genetic manipulation of Mycoplasma agalactiae and Mycoplasma bovis using the transposon Tn4001mod. Int J Med Microbiol 294: 447–453. doi: 10.1016/j.ijmm.2004.09.010
[16]  Zimmerman CU, Herrmann R (2005) Synthesis of a small, cysteine-rich, 29 amino acids long peptide in Mycoplasma pneumoniae. FEMS Microbiol Lett 253: 315–321. doi: 10.1016/j.femsle.2005.09.054
[17]  Halbedel S, Stülke J (2007) Tools for the genetic analysis of Mycoplasma. Int J Med Microbiol 297: 37–44. doi: 10.1016/j.ijmm.2006.11.001
[18]  Baranowski E, Guiral S, Sagné E, Skapski A, Citti C (2010) Critical role of dispensable genes in Mycoplasma agalactiae interaction with mammalian cells. Infect Immun 78: 1542–1551. doi: 10.1128/iai.01195-09
[19]  Skapski A, Hygonenq MC, Sagné E, Guiral S, Citti C, et al. (2011) Genome-scale analysis of Mycoplasma agalactiae loci involved in interaction with host cells. PLoS ONE 6: e25291. doi: 10.1371/journal.pone.0025291
[20]  Fontecave M, Ollagnier de Choudens S, Py B, Barras F (2005) Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 10: 713–721. doi: 10.1007/s00775-005-0025-1
[21]  Marenda MS, Sagné E, Poumarat F, Citti C (2005) Suppression subtractive hybridization as a basis to assess Mycoplasma agalactiae and Mycoplasma bovis genomic diversity and species-specific sequences. Microbiology 151: 475–489. doi: 10.1099/mic.0.27590-0
[22]  Chopra-Dewasthaly R, Citti C, Glew MD, Zimmermann M, Rosengarten R, et al. (2008) Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation. Mol Microbiol 67: 1196–1210. doi: 10.1111/j.1365-2958.2007.06103.x
[23]  Beinert H, Holm RH, Münck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277: 653–659. doi: 10.1126/science.277.5326.653
[24]  Py B, Barras F (2010) Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 8: 436–446. doi: 10.1038/nrmicro2356
[25]  Huet G, Daffé M, Saves I (2005) Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of (Fe-S) cluster assembly: evidence for its implication in the pathogen’s survival. J Bacteriol 187: 6137–6146. doi: 10.1128/jb.187.17.6137-6146.2005
[26]  Runyen-Janecky L, Daugherty A, Lloyd B, Wellington C, Eskandarian H, et al. (2008) Role and regulation of iron-sulfur cluster biosynthesis genes in Shigella flexneri virulence. Infect Immun 76: 1083–1092. doi: 10.1128/iai.01211-07
[27]  Hidese R, Mihara H, Esaki N (2011) Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 91: 47–61. doi: 10.1007/s00253-011-3336-x
[28]  Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79: 3476–3491. doi: 10.1128/iai.00179-11
[29]  Dallo SF, Kannan TR, Blaylock MW, Baseman JB (2002) Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol 46: 1041–1051. doi: 10.1046/j.1365-2958.2002.03207.x
[30]  Balasubramanian S, Kannan TR, Baseman JB (2008) The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin. Infect Immun 76: 3116–3123. doi: 10.1128/iai.00173-08
[31]  Chen H, Yu S, Shen X, Chen D, Qiu X, et al. (2011) The Mycoplasma gallisepticum α-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. Microb Pathog 51: 285–290. doi: 10.1016/j.micpath.2011.03.012
[32]  Dumke R, Hausner M, Jacobs E (2011) Role of Mycoplasma pneumoniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mediating interactions with the human extracellular matrix. Microbiology 157: 2328–2338. doi: 10.1099/mic.0.048298-0
[33]  Thomas C, Jacobs E, Dumke R (2013) Characterization of pyruvate dehydrogenase subunit B and enolase as plasminogen binding proteins in Mycoplasma pneumoniae. Microbiology 159: 352–365. doi: 10.1099/mic.0.061184-0
[34]  MacOwan KJ, Brand TF, McGillveray N, Hunter AR (1984) Experimental infection of castrated lambs with Mycoplasma agalactiae. J Hyg (Lond) 93: 455–463. doi: 10.1017/s0022172400065050
[35]  Sanchis R, Abadie G, Lambert M, Cabasse E, Guibert JM, et al. (1998) Experimental conjunctival-route infection with Mycoplasma agalactiae in lambs. Small Rum Res 27: 31–39. doi: 10.1016/s0921-4488(96)00996-0
[36]  Buonavoglia D, Fasanella A, Greco G, Pratelli A (1999) A study of an experimental infection of sheep with Mycoplasma agalactiae. New Microbiol 22: 27–30.
[37]  Sanchis R, Abadie G, Lambert M, Cabasse E, Dufour P, et al. (2000) Inoculation of lactating ewes by the intramammary route with Mycoplasma agalactiae: comparative pathogenicity of six field strains. Vet Res 31: 329–337. doi: 10.1051/vetres:2000104
[38]  Chopra-Dewasthaly R, Baumgartner M, Gamper E, Innerebner C, Zimmermann M, et al. (2012) Role of Vpma phase variation in Mycoplasma agalactiae pathogenesis. FEMS Immunol Med Microbiol 66: 307–322. doi: 10.1111/j.1574-695x.2012.01010.x
[39]  Glew MD, Browning GF, Markham PF, Walker ID (2000) pMGA phenotypic variation in Mycoplasma gallisepticum occurs in vivo and is mediated by trinucleotide repeat length variation. Infect Immun 68: 6027–6033. doi: 10.1128/iai.68.10.6027-6033.2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133