全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Conjugal Transfer of the Pathogenicity Island ROD21 in Salmonella enterica serovar Enteritidis Depends on Environmental Conditions

DOI: 10.1371/journal.pone.0090626

Full-Text   Cite this paper   Add to My Lib

Abstract:

Unstable pathogenicity islands are chromosomal elements that can be transferred from one bacterium to another. Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogenic bacterium containing such unstable pathogenicity islands. One of them, denominated ROD21, is 26.5 kb in size and capable of excising from the chromosome in certain culture conditions, as well as during bacterial infection of phagocytic cells. In this study we have evaluated whether ROD21 can be effectively transferred from one bacterium to another. We generated a donor and several recipient strains of S. Enteritidis to carry out transfer assays in liquid LB medium. These assays showed that ROD21 is effectively transferred from donor to recipient strains of S. Enteritidis and S. Typhimurium. When Escherichia coli was used as the recipient strain, ROD21 transfer failed to be observed. Subsequently, we showed that a conjugative process was required for the transfer of the island and that changes in temperature and pH increased the transfer frequency between Salmonella strains. Our data indicate that ROD21 is an unstable pathogenicity island that can be transferred by conjugation in a species-specific manner between Salmonellae. Further, ROD21 transfer frequency increases in response to environmental changes, such as pH and temperature.

References

[1]  Juhas M, Van Der Meer JR, Gaillard M, Harding RM, Hood DW, et al. (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews 33: 376–393. doi: 10.1111/j.1574-6976.2008.00136.x
[2]  Broudy TB, Fischetti VA (2003) In vivo lysogenic conversion of Tox(?) Streptococcus pyogenes to Tox(+) with Lysogenic Streptococci or free phage. Infect Immun 71: 3782–3786. doi: 10.1128/iai.71.7.3782-3786.2003
[3]  Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, et al. (2010) Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 192: 1122–1130. doi: 10.1128/jb.01293-09
[4]  Porwollik S, McClelland M (2003) Lateral gene transfer in Salmonella. Microbes Infect 5: 977–989. doi: 10.1016/s1286-4579(03)00186-2
[5]  Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, et al. (2008) Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18: 1624–1637. doi: 10.1101/gr.077404.108
[6]  Quiroz TS, Nieto PA, Tobar HE, Salazar-Echegarai FJ, Lizana RJ, et al. (2011) Excision of an unstable pathogenicity island in Salmonella enterica serovar Enteritidis is induced during infection of phagocytic cells. PloS one 6: e26031. doi: 10.1371/journal.pone.0026031
[7]  Newman RM, Salunkhe P, Godzik A, Reed JC (2006) Identification and Characterization of a Novel Bacterial Virulence Factor That Shares Homology with Mammalian Toll/Interleukin-1 Receptor Family Proteins. Infect Immun 74: 594–601. doi: 10.1128/iai.74.1.594-601.2006
[8]  Silva CA, Blondel CJ, Quezada CP, Porwollik S, Andrews-Polymenis HL, et al. (2012) Infection of mice by Salmonella enterica serovar Enteritidis involves additional genes that are absent in the genome of serovar Typhimurium. Infect Immun 80: 839–849. doi: 10.1128/iai.05497-11
[9]  Tobar HE, Salazar-Echegarai FJ, Nieto PA, Palavecino CE, Sebastian VP, et al. (2013) Chromosomal excision of a new pathogenicity island modulates Salmonella virulence in vivo. Curr Gene Ther 13: 240–249.
[10]  Turner SA, Luck SN, Sakellaris H, Rajakumar K, Adler B (2004) Role of attP in integrase-mediated integration of the Shigella resistance locus pathogenicity island of Shigella flexneri. Antimicrob Agents Chemother 48: 1028–1031. doi: 10.1128/aac.48.3.1028-1031.2004
[11]  Betancor L, Yim L, Fookes M, Martinez A, Thomson NR, et al. (2009) Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates. BMC Microbiol 9: 237. doi: 10.1186/1471-2180-9-237
[12]  Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645. doi: 10.1073/pnas.120163297
[13]  Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory. 545 s. p.
[14]  Coburn PS, Baghdayan AS, Dolan GT, Shankar N (2007) Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island. Mol Microbiol 63: 530–544. doi: 10.1111/j.1365-2958.2006.05520.x
[15]  Rotger R, Casadesus J (1999) The virulence plasmids of Salmonella. Int Microbiol 2: 177–184.
[16]  Garcia-Quintanilla M, Casadesus J (2011) Virulence plasmid interchange between strains ATCC 14028, LT2, and SL1344 of Salmonella enterica serovar Typhimurium. Plasmid 65: 169–175. doi: 10.1016/j.plasmid.2010.12.001
[17]  Tinge SA, Curtiss R 3rd (1990) Conservation of Salmonella typhimurium virulence plasmid maintenance regions among Salmonella serovars as a basis for plasmid curing. Infection and immunity 58: 3084–3092.
[18]  Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15: 589–594. doi: 10.1016/j.gde.2005.09.006
[19]  Edwards RA, Olsen GJ, Maloy SR (2002) Comparative genomics of closely related salmonellae. Trends Microbiol 10: 94–99. doi: 10.1016/s0966-842x(01)02293-4
[20]  Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S, et al. (2009) A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 73: 1141–1155. doi: 10.1111/j.1365-2958.2009.06843.x
[21]  Schubert S, Darlu P, Clermont O, Wieser A, Magistro G, et al. (2009) Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5: e1000257. doi: 10.1371/journal.ppat.1000257
[22]  Corvaglia AR, Francois P, Hernandez D, Perron K, Linder P, et al. (2010) A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A 107: 11954–11958. doi: 10.1073/pnas.1000489107
[23]  Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3: 711–721. doi: 10.1038/nrmicro1234
[24]  Matic I, Taddei F, Radman M (2000) No genetic barriers between Salmonella enterica serovar Typhimurium and Escherichia coli in SOS-induced mismatch repair-deficient cells. J Bacteriol 182: 5922–5924. doi: 10.1128/jb.182.20.5922-5924.2000
[25]  Rayssiguier C, Dohet C, Radman M (1991) Interspecific recombination between Escherichia coli and Salmonella typhimurium occurs by the RecABCD pathway. Biochimie 73: 371–374. doi: 10.1016/0300-9084(91)90103-8
[26]  Rayssiguier C, Thaler DS, Radman M (1989) The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396–401. doi: 10.1038/342396a0
[27]  Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8: 552–563. doi: 10.1038/nrmicro2382
[28]  Bustamante P, Covarrubias PC, Levican G, Katz A, Tapia P, et al. (2012) ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans. J Mol Microbiol Biotechnol 22: 399–407. doi: 10.1159/000346669
[29]  Moreno Switt AI, den Bakker HC, Cummings CA, Rodriguez-Rivera LD, Govoni G, et al. (2012) Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS One 7: e41247. doi: 10.1371/journal.pone.0041247
[30]  Sentchilo V, Czechowska K, Pradervand N, Minoia M, Miyazaki R, et al. (2009) Intracellular excision and reintegration dynamics of the ICEclc genomic island of Pseudomonas knackmussii sp. strain B13. Mol Microbiol 72: 1293–1306. doi: 10.1111/j.1365-2958.2009.06726.x
[31]  Garcillan-Barcia MP, Francia MV, de la Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33: 657–687. doi: 10.1111/j.1574-6976.2009.00168.x
[32]  Doublet B, Boyd D, Mulvey MR, Cloeckaert A (2005) The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol 55: 1911–1924. doi: 10.1111/j.1365-2958.2005.04520.x
[33]  Forns N, Banos RC, Balsalobre C, Juarez A, Madrid C (2005) Temperature-dependent conjugative transfer of R27: role of chromosome- and plasmid-encoded Hha and H-NS proteins. J Bacteriol 187: 3950–3959. doi: 10.1128/jb.187.12.3950-3959.2005
[34]  Giloh M, Shinder D, Yahav S (2012) Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult Sci 91: 175–188. doi: 10.3382/ps.2011-01497
[35]  Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42: 73–91. doi: 10.1006/plas.1999.1421
[36]  Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58: 563–602.
[37]  Williams HG, Day MJ, Fry JC, Stewart GJ (1996) Natural transformation in river epilithon. Appl Environ Microbiol 62: 2994–2998.
[38]  Jarvik T, Smillie C, Groisman EA, Ochman H (2010) Short-term signatures of evolutionary change in the Salmonella enterica serovar typhimurium 14028 genome. J Bacteriol 192: 560–567. doi: 10.1128/jb.01233-09
[39]  Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, et al. (2010) A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 192: 5822–5831. doi: 10.1128/jb.00710-10
[40]  Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533. doi: 10.1038/35054089

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133