全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Synthesis and Propagation of Complement C3 by Microglia/Monocytes in the Aging Retina

DOI: 10.1371/journal.pone.0093343

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. Methods SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes. Results C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines. Conclusions Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.

References

[1]  Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78: 7124–7128. doi: 10.1073/pnas.78.11.7124
[2]  Bonnel S, Mohand-Said S, Sahel JA (2003) The aging of the retina. Exp Gerontol 38: 825–831. doi: 10.1016/s0531-5565(03)00093-7
[3]  Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48: 257–293. doi: 10.1016/s0039-6257(03)00030-4
[4]  Ambati J (2011) Age-related macular degeneration and the other double helix. The Cogan Lecture. Invest Ophthalmol Vis Sci 52: 2165–2169. doi: 10.1167/iovs.11-7328
[5]  Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, et al. (2009) Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol 127: 533–540. doi: 10.1001/archophthalmol.2009.58
[6]  Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Prog Ret Eye Res 20: 385–414. doi: 10.1016/s1350-9462(00)00025-2
[7]  Penfold PL, Provis JM, Billson FA (1987) Age-related macular degeneration: ultrastructural studies of the relationship of leucocytes to angiogenesis. Graefes Arch Clin Exp Ophthalmol 225: 70–76. doi: 10.1007/bf02155808
[8]  Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223: 69–76. doi: 10.1007/bf02150948
[9]  Penfold P, Killingsworth M, Sarks S (1984) An ultrastructural study of the role of leucoytes and fibroblasts in the breakdown of Bruch’s membrane. Aust J Ophthalmol 12: 23–31. doi: 10.1111/j.1442-9071.1984.tb01120.x
[10]  Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76: 463–471. doi: 10.1016/s0014-4835(02)00332-9
[11]  Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH (2009) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94: 918–925. doi: 10.1136/bjo.2009.165563
[12]  Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, et al. (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29: 95–112. doi: 10.1016/j.preteyeres.2009.11.003
[13]  Donoso LA, Kim D, Frost A, Callahan A, Hageman G (2006) The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 51: 137–152. doi: 10.1016/j.survophthal.2005.12.001
[14]  Paidassi H, Tacnet-Delorme P, Garlatti V, Darnault C, Ghebrehiwet B, et al. (2008) C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J Immunol 180: 2329–2338. doi: 10.4049/jimmunol.180.4.2329
[15]  Walport MJ (2001) Complement. Second of two parts. N Engl J Med 344: 1140–1144. doi: 10.1056/nejm200104123441506
[16]  Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, et al. (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308: 421–424. doi: 10.1126/science.1110189
[17]  Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308: 385–389. doi: 10.1126/science.1109557
[18]  Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, et al. (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102: 7227–7232. doi: 10.1073/pnas.0501536102
[19]  Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, et al. (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308: 419–421. doi: 10.1126/science.1110359
[20]  Jakobsdottir J, Conley YP, Weeks DE, Ferrell RE, Gorin MB (2008) C2 and CFB genes in age-related maculopathy and joint action with CFH and LOC387715 genes. PLoS One 3: e2199. doi: 10.1371/journal.pone.0002199
[21]  Spencer KL, Olson LM, Anderson BM, Schnetz-Boutaud N, Scott WK, et al. (2008) C3 R102G polymorphism increases risk of age-related macular degeneration. Hum Mol Genet 17: 1821–1824. doi: 10.1093/hmg/ddn075
[22]  Park KH, Fridley BL, Ryu E, Tosakulwong N, Edwards AO (2009) Complement component 3 (C3) haplotypes and risk of advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 50: 3386–3393. doi: 10.1167/iovs.08-3231
[23]  Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, et al. (2007) Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 39: 1200–1201. doi: 10.1038/ng2131
[24]  Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, et al. (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357: 553–561. doi: 10.1056/nejmoa072618
[25]  Despriet DD, van Duijn CM, Oostra BA, Uitterlinden AG, Hofman A, et al. (2009) Complement component C3 and risk of age-related macular degeneration. Ophthalmology 116: 474–480 e472.
[26]  Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28: 348–368. doi: 10.1016/j.preteyeres.2009.06.001
[27]  Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454: 428–435. doi: 10.1038/nature07201
[28]  Chen M, Muckersie E, Forrester JV, Xu H (2010) Immune activation in retinal aging: a gene expression study. Invest Ophthalmol Vis Sci 51: 5888–5896. doi: 10.1167/iovs.09-5103
[29]  Rutar M, Natoli R, Valter K, Provis JM (2011) Early focal expression of the chemokine Ccl2 by Müller cells during exposure to damage-inducing bright continuous light. Invest Ophthalmol Vis Sci 52 (5): 2379–2388. doi: 10.1167/iovs.10-6010
[30]  Rutar M, Natoli R, Valter K, Provis JM (2011) Analysis of complement expression in light-induced retinal degeneration: Synthesis and deposition of C3 by microglia/macrophages is associated with focal photoreceptor degeneration. Invest Ophthalmol Vis Sci 52 (8): 5347–5358. doi: 10.1167/iovs.10-7119
[31]  Rutar M, Provis JM, Valter K (2010) Brief exposure to damaging light causes focal recruitment of macrophages, and long-term destabilization of photoreceptors in the albino rat retina. Curr Eye Res 35: 631–643. doi: 10.3109/02713681003682925
[32]  Rutar MV, Natoli RC, Provis JM (2012) Small interfering RNA-mediated suppression of Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J Neuroinflammation 9: 221. doi: 10.1186/1742-2094-9-221
[33]  Natoli R, Provis J, Valter K, Stone J (2008) Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study. Mol Vis 14: 1983–1994.
[34]  Yoshida S, Yashar BM, Hiriyanna S, Swaroop A (2002) Microarray analysis of gene expression in the aging human retina. Invest Ophthalmol Vis Sci 43: 2554–2560. doi: 10.1016/s0002-9394(02)01789-0
[35]  Slagboom PE, de Leeuw WJ, Vijg J (1990) Messenger RNA levels and methylation patterns of GAPDH and beta-actin genes in rat liver, spleen and brain in relation to aging. Mech Ageing Dev 53: 243–257. doi: 10.1016/0047-6374(90)90042-e
[36]  Cornish EE, Madigan MC, Natoli R, Hales A, Hendrickson AE, et al. (2005) Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina. Vis Neurosci 22: 447–459. doi: 10.1017/s0952523805224069
[37]  Ma W, Cojocaru R, Gotoh N, Gieser L, Villasmil R, et al. (2013) Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation. Neurobiol Aging 34: 2310–2321. doi: 10.1016/j.neurobiolaging.2013.03.022
[38]  Rapp L, Naash M, Wiegand R, et al. (1985) Morphological and biochemical comparisons between retinal regions having differing susceptibility to photoreceptor degeneration. In: LaVail MM, Hollyfield JG, Anderson RE, editors. Retinal Degeneration: Experimental and Clinical Studies: Liss Alan R Inc. 421–437.
[39]  Gartner S, Henkind P (1981) Aging and degeneration of the human macula. 1. Outer nuclear layer and photoreceptors. Br J Ophthalmol 65: 23–28. doi: 10.1136/bjo.65.1.23
[40]  Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33: 1–17.
[41]  Wu KHC, Madigan MC, Billson F, Penfold PL (2003) Differential expression of GFAP in early v late AMD: a quantitative analysis. Br J Ophthalmol 87: 1159–1166. doi: 10.1136/bjo.87.9.1159
[42]  Sim RB, Kishore U, Villiers CL, Marche PN, Mitchell DA (2007) C1q binding and complement activation by prions and amyloids. Immunobiology 212: 355–362. doi: 10.1016/j.imbio.2007.04.001
[43]  Gasque P (2004) Complement: a unique innate immune sensor for danger signals. Mol Immunol 41: 1089–1098. doi: 10.1016/j.molimm.2004.06.011
[44]  Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49: 171–186. doi: 10.1016/s0162-3109(00)80302-1
[45]  Davies KA, Schifferli JA, Walport MJ (1994) Complement deficiency and immune complex disease. Springer Semin Immunopathol 15: 397–416. doi: 10.1007/bf01837367
[46]  Botto M (1998) C1q knock-out mice for the study of complement deficiency in autoimmune disease. Exp Clin Immunogenet 15: 231–234. doi: 10.1159/000019076
[47]  Navratil JS, Korb LC, Ahearn JM (1999) Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 42: 47–52. doi: 10.1016/s0162-3109(99)00018-1
[48]  Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158: 4525–4528.
[49]  Taylor PR, Carugati A, Fadok VA, Cook HT, Andrews M, et al. (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192: 359–366. doi: 10.1084/jem.192.3.359
[50]  Trouw LA, Blom AM, Gasque P (2008) Role of complement and complement regulators in the removal of apoptotic cells. Mol Immunol 45: 1199–1207. doi: 10.1016/j.molimm.2007.09.008
[51]  Gullstrand B, Martensson U, Sturfelt G, Bengtsson AA, Truedsson L (2009) Complement classical pathway components are all important in clearance of apoptotic and secondary necrotic cells. Clin Exp Immunol 156: 303–311. doi: 10.1111/j.1365-2249.2009.03896.x
[52]  Ricklin D, Lambris JD (2013) Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190: 3831–3838. doi: 10.4049/jimmunol.1203487
[53]  Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ (2012) Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 9: 137. doi: 10.1186/1742-2094-9-137
[54]  Cashman SM, Desai A, Ramo K, Kumar-Singh R (2011) Expression of complement component 3 (C3) from an adenovirus leads to pathology in the murine retina. Invest Ophthalmol Vis Sci 52: 3436–3445. doi: 10.1167/iovs.10-6002
[55]  Coffey PJ, Gias C, McDermott CJ, Lundh P, Pickering MC, et al. (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A 104: 16651–16656. doi: 10.1073/pnas.0705079104
[56]  Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, et al. (2009) Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 174: 2310–2323.
[57]  Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H (2008) Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 49: 4162–4168. doi: 10.1167/iovs.08-1738
[58]  Diaz-Araya CM, Provis JM, Penfold PL, Billson FA (1995) Development of microglial topography in human retina. J Comp Neurol 363: 53–68. doi: 10.1002/cne.903630106
[59]  Hollyfield JG (2010) Age-related macular degeneration: the molecular link between oxidative damage, tissue-specific inflammation and outer retinal disease: the Proctor lecture. Invest Ophthalmol Vis Sci 51: 1275–1281. doi: 10.1167/iovs.09-4478
[60]  Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, et al. (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14: 194–198. doi: 10.1038/nm1709
[61]  Chen M, Forrester JV, Xu H (2007) Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments. Exp Eye Res 84: 635–645. doi: 10.1016/j.exer.2006.11.015
[62]  Lau LI, Chiou SH, Liu CJ, Yen MY, Wei YH (2011) The effect of photo-oxidative stress and inflammatory cytokine on complement factor H expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52: 6832–6841. doi: 10.1167/iovs.11-7815
[63]  Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: a review. Eye (Lond) 9 (Pt 6): 763–771. doi: 10.1038/eye.1995.192
[64]  Ma W, Coon S, Zhao L, Fariss RN, Wong WT (2012) A2E accumulation influences retinal microglial activation and complement regulation. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2012.06.010
[65]  Chen M, Zhao J, Luo C, Pandi SP, Penalva RG, et al. (2012) Para-inflammation-mediated retinal recruitment of bone marrow-derived myeloid cells following whole-body irradiation is CCL2 dependent. Glia 60: 833–842. doi: 10.1002/glia.22315
[66]  Klein R (2005) Epidemiology of Age-related macular degeneration. In: Penfold P, Provis J, editors. Macular Degeneration. Berlin: Springer-Verlag.
[67]  Karagianni N, Adamis AP The case for complement and inflammation in AMD: open questions. Adv Exp Med Biol 703: 1–7. doi: 10.1007/978-1-4419-5635-4_1
[68]  Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, et al. (2012) Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med 4: 16. doi: 10.1186/gm315
[69]  Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30: 97–110. doi: 10.1007/s00281-008-0112-9
[70]  Ezzat MK, Hann CR, Vuk-Pavlovic S, Pulido JS (2008) Immune cells in the human choroid. Br J Ophthalmol 92: 976–980. doi: 10.1136/bjo.2007.129742
[71]  Penfold PL, Killingsworth MC, Sarks SH (1986) Senile macular degeneration. The involvement of giant cells in atrophy of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 27: 364–271.
[72]  Wong J, Madigan M, Billson F, Penfold P (2001) Quantification of leukocyte common antigen (CD45) expression in macular degeneration. Invest Ophthalmol Vis Sci 42: S227.
[73]  Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, et al. (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44: 3586–3592. doi: 10.1167/iovs.03-0038
[74]  Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44: 3578–3585. doi: 10.1167/iovs.03-0097
[75]  Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L, et al. (2013) CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 5: 1775–1793. doi: 10.1002/emmm.201302692
[76]  Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, et al. (2009) The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 50: 5934–5943. doi: 10.1167/iovs.09-3462

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133