全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Label-Free Morphology-Based Prediction of Multiple Differentiation Potentials of Human Mesenchymal Stem Cells for Early Evaluation of Intact Cells

DOI: 10.1371/journal.pone.0093952

Full-Text   Cite this paper   Add to My Lib

Abstract:

Precise quantification of cellular potential of stem cells, such as human bone marrow–derived mesenchymal stem cells (hBMSCs), is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1) the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2) predictions of potentials are generated before differentiation cultures are initiated; (3) prediction of multiple potentials can be provided simultaneously for each sample; and (4) predictions of potentials yield quantitative values that correlate strongly with the experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion, can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials (osteogenic, adipogenic, and chondrogenic) and population doubling potential using morphological features apparent during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-related genes (p16 and p21) and cytoskeleton-related genes (PTK2, CD146, and CD49) already correlated to the decrease of potentials at this stage. To objectively compare the performance of morphology and gene expression for such early prediction, we tested a range of models using various combinations of features. Such comparison of predictive performances revealed that morphological features performed better overall than gene-expression profiles, balancing the predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not only identifies the best morphological feature conversion method for objective potential prediction, but should also allow clinicians to choose the most practical morphology-based prediction method for their own purposes.

References

[1]  Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218: 237–245. doi: 10.1002/jcp.21592
[2]  Braude P, Minger S, Warwick R (2005) Stem cell therapy: hope or hype? Safety and quality must be assured before this treatment can really benefit patients. Br Med J 330: 1159–1160.
[3]  Wang Y, Han ZB, Song YP, Han ZC (2012) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012: 652034. doi: 10.1155/2012/652034
[4]  Werbowetski-Ogilvie T, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, et al. (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27: 91–97. doi: 10.1038/nbt.1516
[5]  Settleman J (2004) Tension precedes commitment - even for a stem cell. Mol Cell 14: 148–150. doi: 10.1016/s1097-2765(04)00207-2
[6]  Docheva D, Padula D, Popov C, Mutschler W, Clausen-Schaumann H, et al. (2008) Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. J Cell Mol Med 12: 537–552. doi: 10.1111/j.1582-4934.2007.00138.x
[7]  Zhang L, Yu J, Pan H, Hu P, Hao Y, et al. (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 104: 19023–19028. doi: 10.1073/pnas.0709695104
[8]  Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I, et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100.
[9]  Futamura Y, Kawatani M, Kazami S, Tanaka K, Muroi M, et al. (2012) Morphobase, an encyclopedic cell morphology database, and its use for drug target identification. Chem Biol 19: 1620–1630. doi: 10.1016/j.chembiol.2012.10.014
[10]  Misselwitz B, Strittmatter G, Periaswamy B, Schlumberger MC, Rout S, et al.. (2010) Enhanced CellClassifier: a multi-class classification tool for microscopy images. BMC Bioinformatics 11.
[11]  Treiser MD, Yang EH, Gordonov S, Cohen DM, Androulakis IP, et al. (2010) Cytoskeleton-based forecasting of stem cell lineage fates. Proc Natl Acad Sci U S A 107: 610–615. doi: 10.1073/pnas.0909597107
[12]  Kim JJ, Vega SL, Moghe PV (2013) A high content imaging-based approach for classifying cellular phenotypes. Methods in molecular biology 1052: 41–48. doi: 10.1007/7651_2013_29
[13]  Vega SL, Liu E, Patel PJ, Kulesa AB, Carlson AL, et al. (2012) High-content imaging-based screening of microenvironment-induced changes to stem cells. J Biomol Screen 17: 1151–1162. doi: 10.1177/1087057112453853
[14]  Seiler C, Gazdhar A, Reyes M, Benneker LM, Geiser T, et al.. (2012) Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation. J Tissue Eng Regen Med.
[15]  Friedenstein A, Gorskaja U, Kulagina N (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4: 267–274.
[16]  Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in molecular medicine 7: 259–264. doi: 10.1016/s1471-4914(01)02016-0
[17]  Matsuoka F, Takeuchi I, Agata H, Kagami H, Shiono H, et al. (2013) Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PloS ONE 8: e55082. doi: 10.1371/journal.pone.0055082
[18]  Konstantinov B, Zhou W, Golini F, Hu W-S (1994) Expert-system in the control of animal-cell culture processes - potentials, functions, and perspectives. Cytotechnology 14: 233–246. doi: 10.1007/bf00749619
[19]  R?sland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, et al. (2009) Long-term cultures of bone marrow derived human mesenchymal stem cells frequeantly undergo spontaneous malignant transformation. Cancer Res 69: 5331–5339. doi: 10.1158/0008-5472.can-08-4630
[20]  Ito T, Sawada R, Fujiwara Y, Tsuchiya T (2008) FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling. Cytotechnology 56: 1–7. doi: 10.1007/s10616-007-9092-1
[21]  Wang DJ, Park JS, Chu JSF, Krakowski A, Luo KX, et al. (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta 1 stimulation. J Biol Chem 279: 43725–43734. doi: 10.1074/jbc.m407368200
[22]  Massague J, Xi Q (2012) TGF-beta control of stem cell differentiation genes. FEBS letters 586: 1953–1958. doi: 10.1016/j.febslet.2012.03.023
[23]  Kinkel A, Fernyhough M, Helterline D, Vierck J, Oberg K, et al. (2004) Oil red-O stains non-adipogenic cells: a precautionary note. Cytotechnology 46: 49–56. doi: 10.1007/s10616-004-3903-4
[24]  Gregory C, Gunn W, Peister A, Prockop D (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329: 77–84. doi: 10.1016/j.ab.2004.02.002
[25]  Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E (1999) Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18: 6835–6839. doi: 10.1038/sj.onc.1203233
[26]  Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269. doi: 10.1146/annurev.cellbio.21.020604.150721
[27]  McBeath R, Pirone D, Nelson C, Bhadriraju K, Chen C (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6: 483–495. doi: 10.1016/s1534-5807(04)00075-9
[28]  Zuckerman V, Wolyniec K, Sionov R, Haupt S, Haupt Y (2009) Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 219: 3–15. doi: 10.1002/path.2584
[29]  Motaln H, Schichor C, Lah TT (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116: 2519–2530. doi: 10.1002/cncr.25056
[30]  Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, et al. (2011) Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA 108: 7177–7182. doi: 10.1073/pnas.1103350108
[31]  Comer K, Dennis P, Armstrong L, Catino J, Kastan M, et al. (1998) Human smooth muscle alpha-actin gene is a transcriptional target of the p53 tumor suppressor protein. Oncogene 16: 1299–1308. doi: 10.1038/sj.onc.1201645
[32]  Weissbach L, Settleman J, Kalady M, Snijders A, Murthy A, et al. (1994) Identification of a humana RASGAP-related protein containing calmodulin-binding motifs. J Biol Chem 269: 20517–20521.
[33]  Jacobs J, Kieboom K, Marino S, DePinho R, van Lohuizen M (1999) The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397: 164–168.
[34]  Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, et al. (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16(INK4a). Nature 443: 421–426. doi: 10.1038/nature05159
[35]  Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, et al. (2007) Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 25: 2371–2382. doi: 10.1634/stemcells.2007-0225
[36]  Bin Noh H, Ahn H, Lee W, Kwack K, Do Kwon Y (2010) The molecular signature of in vitro senescence in human mesenchymal stem cells. Genes Genomics 32: 87–93. doi: 10.1007/s13258-010-0868-x
[37]  Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T (2007) FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta 2. Biochem Biophys Res Commun 359: 108–114. doi: 10.1016/j.bbrc.2007.05.067
[38]  Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276: 1425–1428. doi: 10.1126/science.276.5317.1425
[39]  Roskelley CD, Desprez PY, Bissell MJ (1994) Extracellular Matrix-Dependent Tissue-Specific Gene-Expression in Mammary Epithelial-Cells Requires Both Physical and Biochemical Signal-Transduction. Proc Natl Acad Sci USA 91: 12378–12382. doi: 10.1073/pnas.91.26.12378
[40]  Watt FM, Jordan PW, Oneill CH (1988) Cell-Shape Controls Terminal Differentiation of Human Epidermal-Keratinocytes. Proc Natl Acad Sci USA 85: 5576–5580. doi: 10.1073/pnas.85.15.5576
[41]  Steedman H (1950) Alcian blue 8 GS - A new stain for mucin. Q J Microsc Sci 91: 477–479.
[42]  Ben Azouna N, Jenhani F, Regaya Z, Berraeis L, Ben Othman T, et al. (2012) Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther 3: 6–10. doi: 10.1186/scrt97
[43]  Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc Series B Stat Methodol 58: 267–288.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133