Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells.
References
[1]
Ng HH, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol 13: 490–496. doi: 10.1038/ncb0511-490
[2]
Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460: 118–122. doi: 10.1038/nature08113
[3]
Rehman J (2010) Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J Mol Med (Berl) 88: 981–986. doi: 10.1007/s00109-010-0678-2
[4]
Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5: 140–158. doi: 10.1007/s12015-009-9058-0
[5]
Intoh A, Kurisaki A, Fukuda H, Asashima M (2009) Separation with zwitterionic hydrophilic interaction liquid chromatography improves protein identification by matrix-assisted laser desorption/ionization-based proteomic analysis. Biomed Chromatogr 23: 607–614. doi: 10.1002/bmc.1159
[6]
Artal-Sanz M, Tavernarakis N (2009) Prohibitin and mitochondrial biology. Trends Endocrinol Metab 20: 394–401. doi: 10.1016/j.tem.2009.04.004
[7]
Merkwirth C, Langer T (2009) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793: 27–32. doi: 10.1016/j.bbamcr.2008.05.013
[8]
Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, et al. (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22: 476–488. doi: 10.1101/gad.460708
[9]
Thuaud F, Ribeiro N, Nebigil CG, Desaubry L (2013) Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol 20: 316–331. doi: 10.1016/j.chembiol.2013.02.006
[10]
Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5: 714–720. doi: 10.4161/cbt.5.7.2975
[11]
Park SE, Xu J, Frolova A, Liao L, O'Malley BW, et al. (2005) Genetic deletion of the repressor of estrogen receptor activity (REA) enhances the response to estrogen in target tissues in vivo. Mol Cell Biol 25: 1989–1999. doi: 10.1128/mcb.25.5.1989-1999.2005
[12]
Akama K, Horikoshi T, Nakayama T, Otsu M, Imaizumi N, et al. (2011) Proteomic identification of differentially expressed genes in neural stem cells and neurons differentiated from embryonic stem cells of cynomolgus monkey (Macaca fascicularis) in vitro. Biochim Biophys Acta 1814: 265–276. doi: 10.1016/j.bbapap.2010.10.009
[13]
Baharvand H, Hajheidari M, Ashtiani SK, Salekdeh GH (2006) Proteomic signature of human embryonic stem cells. Proteomics 6: 3544–3549. doi: 10.1002/pmic.200500844
[14]
Masui S, Shimosato D, Toyooka Y, Yagi R, Takahashi K, et al. (2005) An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit. Nucleic Acids Res 33: e43. doi: 10.1093/nar/gni043
[15]
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, et al. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8: 288–296. doi: 10.1038/nn1402
[16]
Rastogi S, Joshi B, Fusaro G, Chellappan S (2006) Camptothecin induces nuclear export of prohibitin preferentially in transformed cells through a CRM-1-dependent mechanism. J Biol Chem 281: 2951–2959. doi: 10.1074/jbc.m508669200
[17]
Watanabe M, Masuyama N, Fukuda M, Nishida E (2000) Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep 1: 176–182. doi: 10.1093/embo-reports/kvd029
[18]
Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J (2009) A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci U S A 106: 11960–11965. doi: 10.1073/pnas.0904875106
[19]
Olichon A, Baricault L, Gas N, Guillou E, Valette A, et al. (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278: 7743–7746. doi: 10.1074/jbc.c200677200
[20]
Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279: 18792–18798. doi: 10.1074/jbc.m400920200
[21]
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, et al. (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126: 177–189. doi: 10.1016/j.cell.2006.06.025
[22]
Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, et al. (1999) An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci U S A 96: 6947–6952. doi: 10.1073/pnas.96.12.6947
[23]
Kasashima K, Ohta E, Kagawa Y, Endo H (2006) Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. J Biol Chem 281: 36401–36410. doi: 10.1074/jbc.m605260200
[24]
Sun L, Cao X, Liu B, Huang H, Wang X, et al. (2011) CaMK IV phosphorylates prohibitin 2 and regulates prohibitin 2-mediated repression of MEF2 transcription. Cell Signal 23: 1686–1690. doi: 10.1016/j.cellsig.2011.06.005
[25]
Heron-Milhavet L, Mamaeva D, Rochat A, Lamb NJ, Fernandez A (2008) Akt2 is implicated in skeletal muscle differentiation and specifically binds Prohibitin2/REA. J Cell Physiol 214: 158–165. doi: 10.1002/jcp.21177
[26]
Wang S, Fusaro G, Padmanabhan J, Chellappan SP (2002) Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21: 8388–8396. doi: 10.1038/sj.onc.1205944
[27]
Wang S, Nath N, Fusaro G, Chellappan S (1999) Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol 19: 7447–7460.
[28]
Chen CT, Hsu SH, Wei YH (2012) Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming. Biochim Biophys Acta 1820: 571–576. doi: 10.1016/j.bbagen.2011.09.013
[29]
Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8: 870–879. doi: 10.1038/nrm2275
[30]
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, et al. (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26: 211–215. doi: 10.1038/79944
[31]
Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, et al. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207–210. doi: 10.1038/79936
[32]
Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, et al. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449–451. doi: 10.1038/ng1341
[33]
Voccoli V, Colombaioni L (2009) Mitochondrial remodeling in differentiating neuroblasts. Brain Res 1252: 15–29. doi: 10.1016/j.brainres.2008.11.026
[34]
Feng R, Zhou S, Liu Y, Song D, Luan Z, et al. (2013) Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem J 450: 459–468. doi: 10.1042/bj20120924
[35]
Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, et al. (2007) Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 4 Suppl 1: S60–67. doi: 10.1038/ncpcardio0766
[36]
Comelli M, Domenis R, Bisetto E, Contin M, Marchini M, et al. (2011) Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts. Mitochondrion 11: 315–326. doi: 10.1016/j.mito.2010.12.007
[37]
Hom JR, Quintanilla RA, Hoffman DL, de Mesy Bentley KL, Molkentin JD, et al. (2011) The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell 21: 469–478. doi: 10.1016/j.devcel.2011.08.008
[38]
Hogan B, Beddington R, Constantini F, Lacy E (1994) Manipulating the Mouse Embryo: A Laboratory Manual. NY: Cold Spring Harbor Laboratory Press.
[39]
Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7: 1063–1066. doi: 10.1038/sj.gt.3301206
[40]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872. doi: 10.1016/j.cell.2007.11.019
[41]
Yoshida-Koide U, Matsuda T, Saikawa K, Nakanuma Y, Yokota T, et al. (2004) Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells. Biochem Biophys Res Commun 313: 475–481. doi: 10.1016/j.bbrc.2003.11.138
[42]
Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2012) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 8: 274–284. doi: 10.1016/j.scr.2011.10.002
[43]
Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, et al. (2006) The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol 26: 1318–1332. doi: 10.1128/mcb.26.4.1318-1332.2006
[44]
Mandal S, Lindgren AG, Srivastava AS, Clark AT, Banerjee U (2011) Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cells 29: 486–495. doi: 10.1002/stem.590