Prepuberal Stimulation of 5-HT7-R by LP-211 in a Rat Model of Hyper-Activity and Attention-Deficit: Permanent Effects on Attention, Brain Amino Acids and Synaptic Markers in the Fronto-Striatal Interface
The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.
Arnsten AF, Wang MJ, Paspalas CD (2012) Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76: 223–239 10.1016/j.neuron.2012.08.038 [doi]. doi: 10.1016/j.neuron.2012.08.038
[3]
Hirano S, Yamada M (2013) Network analyses in neuroimaging studies. Brain Nerve 65: 659–667 1416101517 [pii].
[4]
Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23 Suppl 1: 33–41 10.2165/00023210-200923000-00005 [doi]. doi: 10.2165/00023210-200923000-00005
[5]
Sadile AG (1993) What can genetic models tell us about behavioral plasticity? Rev Neurosci 4: 287–303. doi: 10.1515/revneuro.1993.4.3.287
[6]
Gironi Carnevale UA, Vitullo E, Varriale B, Ruocco LA, Sadile AG (2007) A classical Mendelian cross-breeding study of the Naples high and low excitability rat lines. Behav Brain Res 183: 130–140. doi: 10.1016/j.bbr.2007.05.032
[7]
Mayer ML (2011) Emerging models of glutamate receptor ion channel structure and function. Structure 19: 1370–1380 10.1016/j.str.2011.08.009 [doi]. doi: 10.1016/j.str.2011.08.009
[8]
Niciu MJ, Kelmendi B, Sanacora G (2012) Overview of glutamatergic neuro-transmission in the nervous system. Pharmacol Biochem Behav 100: 656–664 10.1016/j.pbb.2011.08.008 [doi]. doi: 10.1016/j.pbb.2011.08.008
[9]
Marmiroli P, Cavaletti G (2012) The glutamatergic neurotransmission in the central nervous system. Curr Med Chem 19: 1269–1276 CMC-EPUB-20120217-001 [pii]. doi: 10.2174/092986712799462711
[10]
Bauer M, Praschak-Rieder N, Kasper S, Willeit M (2012) Is dopamine neuro-transmission altered in prodromal schizophrenia? A review of evidence. Curr Pharm Des 18: 1568–1579 CPD-EPUB-20120118-011 [pii]. doi: 10.2174/138161212799958611
[11]
Genro JP, Kieling C, Rohde LA, Hutz MH (2010) Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother 10: 587–601 10.1586/ern.10.17 [doi]. doi: 10.1586/ern.10.17
[12]
Hedlund PB, Leopoldo M, Caccia S, Sarkisyan G, Fracasso C, et al. (2010) LP-211 is a brain penetrant selective agonist for the serotonin 5-HT(7) receptor. Neurosci Lett 481: 12–16 10.1016/j.neulet.2010.06.036 [doi]. doi: 10.1016/j.neulet.2010.06.036
[13]
Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB (2011) Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 129: 120–148 10.1016/j.pharmthera.2010.08.013 [doi]. doi: 10.1016/j.pharmthera.2010.08.013
[14]
Ruocco LA, Sadile AG, Gironi Carnevale UA (2009) Modeling the Mesocortical Variant of ADHD: the Naples High Excitability rats. In: Gordon S.M, Mitchell A.M., editors. Attention Deficit Hyperactivity Disorder. New York: Nova Science. pp. 85–106.
[15]
Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention-deficit hyperactivity disorder. Brain Res Rev 42: 1–21. doi: 10.1016/s0165-0173(02)00274-6
[16]
Viggiano D, Vallone D, Welzl H, Sadile AG (2002) The Naples high-and low excitability rats: selective breeding, behavioral profile, morphometry and molecular biology of the mesocortical dopamine system. Behav Genet 32: 315–333.
[17]
Viggiano D, Vallone D, Ruocco LA, Sadile AG (2003) Behavioural, pharmacological, morpho-functional molecular studies reveal a hyper-functioning mesocortical dopamine system in an animal model of ADHD. Neurosci Biobehav Rev 27: 683–689. doi: 10.1016/j.neubiorev.2003.08.011
[18]
Broadhurst PL (1960) Experiments in psychogenetics: application of biometrical genetics to the inheritance of behavior. In: Eysenck HJ, editor. Experiments in personality. Vol. I. Psychogenetics and Psycho-pharmacology. London: Routledge, Regan Paul. pp. 1–102.
[19]
Girault JA (2012) Integrating neurotransmission in striatal medium spiny neurons. Adv Exp Med Biol 970: 407–429 10.1007/978-3-7091-0932-8_18 [doi]. doi: 10.1007/978-3-7091-0932-8_18
[20]
Ruocco LA, Di Pizzo A, Gironi Carnevale UA, Murolo M, Sadile AG, et al. (2009) Excitatory amino acids in the forebrain of the naples high-excitability rats: neurochemical and behavioural effects of subchronic D-aspartate and its diethyl ester prodrug. Behav Brain Res 198: 37–44. doi: 10.1016/j.bbr.2008.11.006
[21]
Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, et al. (2008) D-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28: 10404–10414 10.1523/JNEUROSCI.1618-08.2008 [doi]. doi: 10.1523/jneurosci.1618-08.2008
[22]
D'Aniello A (2007) D-Aspartic acid: an endogenous amino acid with an important neuro-endocrine role. Brain Res Rev 53: 215–234. doi: 10.1016/j.brainresrev.2006.08.005
[23]
Ruocco LA, Gironi Carnevale UA, Sica A, Arra C, Topo E, et al. (2009) Elevated forebrain excitatory L-glutamate, L-aspartate and D-aspartate in Naples high-excitability rats. Behav Brain Res 198: 24–28 10.1016/j.bbr.2008.11.029 [doi]. doi: 10.1016/j.bbr.2008.11.029
[24]
Di Chiara G, Tanda G, Carboni E (1996) Estimation of in-vivo neurotransmitter release by brain microdialysis: the issue of validity. Behav Pharmacol 7: 640–657. doi: 10.1097/00008877-199611000-00009
[25]
Adriani W, Koot S, Columba-Cabezas S, Romano E, Travaglini D, et al. (2012) Immunization with DAT fragments is associated with long-term striatal impairment, hyperactivity and reduced cognitive flexibility in mice. Behav Brain Funct 8: 54 10.1186/1744-9081-8-54 [doi]. doi: 10.1186/1744-9081-8-54
[26]
Adriani W, Zoratto F, Laviola G (2012) Brain processes in discounting: consequences of adolescent methylphenidate exposure. Curr Top Behav Neurosci 9: 113–143 10.1007/7854_2011_156 [doi]. doi: 10.1007/7854_2011_156
Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, Darnell RB, Jan YN, Jan LY (2005) Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 123: 105–118 10.1016/j.cell.2005.07.033 [doi]. doi: 10.1016/j.cell.2005.07.033
[29]
Dobbing J (1968) Vulnerable periods in developing brain. In: Davidson AN, Dobbing J, editors. Applied neurochemistry. Philadelphia: Davis. pp. 287–316.
Teicher MH, Krenzel E, Thompson AP, Andersen SL (2003) Dopamine receptor pruning during the peripubertal period is not attenuated by NMDA receptor antagonism in rat. Neurosci Lett 339: 169–171 S0304394002014751 [pii]. doi: 10.1016/s0304-3940(02)01475-1
[32]
Teicher MH, Andersen SL, Hostetter JC (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev Brain Res 89: 167–172 016538069500109Q [pii]. doi: 10.1016/0165-3806(95)00109-q
[33]
Canese R, Zoratto F, Altabella L, Porcari P, Mercurio L, de Pasquale F, et al. (2013) Persistent modification of forebrain networks and metabolism in rats following adolescent exposure to a 5-HT7 agonist. Psychopharmacology in press.
[34]
Perez-Garcia G, Meneses A (2009) Memory time-course: mRNA 5-HT1A and 5-HT7 receptors. Behav Brain Res 202: 102–113 10.1016/j.bbr.2009.03.027 [doi]. doi: 10.1016/j.bbr.2009.03.027
[35]
Eriksson TM, Golkar A, Ekstrom JC, Svenningsson P, Ogren SO (2008) 5-HT7 receptor stimulation by 8-OH-DPAT counteracts the impairing effect of 5-HT(1A) receptor stimulation on contextual learning in mice. Eur J Pharmacol 596: 107–110 10.1016/j.ejphar.2008.08.026 [doi]. doi: 10.1016/j.ejphar.2008.08.026
[36]
Manuel-Apolinar L, Meneses A (2004) 8-OH-DPAT facilitated memory consolidation and increased hippocampal and cortical cAMP production. Behav Brain Res 148: 179–184 S0166432803001864 [pii]. doi: 10.1016/s0166-4328(03)00186-4
[37]
Perez-Garcia G, Gonzalez-Espinosa C, Meneses A (2006) An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation. Behav Brain Res 169: 83–92 10.1016/j.bbr.2005.12.013 [doi]. doi: 10.1016/j.bbr.2005.12.013
[38]
Sarkisyan G, Hedlund PB (2009) The 5-HT7 receptor is involved in allocentric spatial memory information processing. Behav Brain Res 202: 26–31 10.1016/j.bbr.2009.03.011 [doi]. doi: 10.1016/j.bbr.2009.03.011
[39]
Bonaventure P, Aluisio L, Shoblock J, Boggs JD, Fraser IC, et al. (2011) Pharmacological blockade of 5-HT(7) receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission. PLoS One 6: e20210 10.1371/journal.pone.0020210 [doi]. doi: 10.1371/journal.pone.0020210
[40]
Ruocco LA, Romano E, Treno C, Lacivita E, Arra C, et al.. (2013) Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in Naples High Excitability rats. Synapse, Nov 25. [Epub ahead of print] 10.1002/syn.21724 [doi].
[41]
Berke JD, Breck JT, Eichenbaum H (2009) Striatal versus hippocampal representations during win-stay maze performance. J Neurophysiol 101: 1575–1587 10.1152/jn.91106.2008 [doi]. doi: 10.1152/jn.91106.2008
[42]
Ruocco LA, de Souza Silva MA, Topic B, Mattern C, Huston JP, Sadile AG (2009) Intranasal Application of Dopamine Reduces Activity and Improves Attention in Naples High Excitability Rats that Feature the Mesocortical Variant of ADHD. Eur Neuropsycopharmacol 19: 693–701. doi: 10.1016/j.euroneuro.2009.02.005
[43]
Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10: 561–572 10.1038/nrn2515 [doi]. doi: 10.1038/nrn2515
[44]
Waagepetersen HS, Sonnewald U, Schousboe A (2007) Glutamine, glutamate and GABA: metabolic aspects. In: Abel Lajtha, editor. Handbook of Neurochemistry and Molecular Neurobiology. Amino Acid and Peptides in the Nervous System. New York: Springer. pp. 1–22.
[45]
Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Blederman J (1997) Volumetric MRI analysis comparing attention-deficit hyperactivity disorder and normal controls. Neurology 48: 589–601. doi: 10.1212/wnl.48.3.589
[46]
Kelly AM, Margulies DS, Castellanos FX (2007) Recent advances in structural and functional brain imaging studies of attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 9: 401–407. doi: 10.1007/s11920-007-0052-4
[47]
Viggiano D, Ruocco LA, Sadile AG (2003) Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27: 623–637. doi: 10.1016/j.neubiorev.2003.08.006
[48]
Ochiishi T, Yamauchi T, Terashima T (1998) Regional differences between the immunohistochemical distribution of Ca2+/calmodulin-dependent protein kinase II alpha and beta isoforms in the brainstem of the rat. Brain Res 790: 129–140 S0006-8993(98)00058-4 [pii]. doi: 10.1016/s0006-8993(98)00058-4
[49]
Marco EM, Adriani W, Ruocco LA, Canese R, Sadile AG, Laviola G (2011) Neurobehavioral adaptations to methylphenidate: The issue of early adolescent exposure. [Special issue] Neurosci Biobehav Rev 35: 1722–1739 10.1016/j.neubiorev.2011.02.011 [doi]. doi: 10.1016/j.neubiorev.2011.02.011
[50]
Papa M, Sagvolden T, Sergeant JA, Sadile AG (1996) Reduced CaMKII-positive neurones in the accumbal shell of an animal model of Attention-Deficit Hyperactivity Disorder. Neuroreport 7: 3017–3020. doi: 10.1097/00001756-199611250-00044
[51]
Papa M, Sellitti S, Sadile AG (2000) Remodeling of neural Networks in the anterior forebrain of an animal model of hyperactivity and attention deficit as monitored by molecular imaging probes. Neurosci Biobehav Rev 24: 149–156. doi: 10.1016/s0149-7634(99)00052-4
[52]
Ruocco LA, Gironi Carnevale UA, Treno C, Sadile AG, Melisi D, et al. (2010) Prepuberal subchronic methylphenidate and atomoxetine induce different long-term effects on adult behaviour and forebrain dopamine, norepinephrine and serotonin in Naples High-Excitability rats. Behav Brain Res 210: 99–106 10.1016/j.bbr.2010.02.020 [doi]. doi: 10.1016/j.bbr.2010.02.020
[53]
Illiano P, Pagano C, Tino A, Boatto G, Nieddu M, et al. (2011) Prepuberal subchronic intranasal DA differentially affects dopamine transporter and modifies L-Glutamate, L-Aspartate and L-Leucine content in the fronto-striatal interface of Naples High-Excitability rats. Soc Neurosci Abstr
[54]
Grace AA, Bunnney BS, Moore H, Todd CL (1997) Dopamine-cell depolarization block as a model for the therapeutic actions of anti-psychotic drugs. Trends Neurosci 20: 31–37. doi: 10.1016/s0166-2236(96)10064-3
[55]
Fumagalli F, Cattaneo A, Caffino L, Ibba M, Racagni G, et al. (2010) Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: comparison with methyl-phenidate. Pharmacol Res 62: 523–529 10.1016/j.phrs.2010.07.009 [doi]. doi: 10.1016/j.phrs.2010.07.009
[56]
Masana M, Santana N, Artigas F, Bortolozzi A (2012) Dopamine neuro-transmission and atypical antipsychotics in prefrontal cortex: a critical review. Curr Top Med Chem 12: 2357–2374 CTMC-EPUB-20121221-8 [pii]. doi: 10.2174/156802612805289872
[57]
Speranza L, Chambery A, Di Domenico M, Crispino M, Severino V, et al. (2013) The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacol 67: 155–167 10.1016/j.neuropharm.2012.10.026 [doi]. doi: 10.1016/j.neuropharm.2012.10.026
[58]
Yovell Y, Kandel ER, Dudai Y, Abrams TW (1987) Biochemical correlates of short-term sensitization in Aplysia: temporal analysis of adenylate cyclase stimulation in a perfused-membrane preparation. Proc Natl Acad Sci U S A 84: 9285–9289. doi: 10.1073/pnas.84.24.9285
[59]
Yovell Y, Abrams TW (1992) Temporal asymmetry in activation of Aplysia adenilate cyclase by calcium and transmitters may explain temporal requirement of conditioning. Proc Natl Acad Sci U S A 89: 6526–6554. doi: 10.1073/pnas.89.14.6526
[60]
Ruocco LA, Vallone D, Treno C, Tino A, Sadile AG (2011) Higher density of NMDAR1 subunit in medial prefrontal cortex of the Naples High-Excitability Rats. Molecular mechanisms in Neuroscience, Accademia Nazionale dei Lincei, Roma, Italy.
[61]
Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, et al. (2008) Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging 26: 905–913 10.1016/j.mri.2008.01.045 [doi]. doi: 10.1016/j.mri.2008.01.045
[62]
Esposito F, Aragri A, Latorre V, Popolizio T, Scarabino T, et al. (2009) Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch Ital Biol 147: 11–20.
[63]
Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2: 685–694 10.1038/35094500 [doi]. doi: 10.1038/35094500
[64]
Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100: 253–258 10.1073/pnas.0135058100 [doi]. doi: 10.1073/pnas.0135058100
[65]
Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37: 1083–1090 10.1016/j.neuroimage.2007.02.041 [doi]. doi: 10.1016/j.neuroimage.2007.02.041
[66]
Sadile AG, Gironi Carnevale UA, Vitullo E, Cioffi LA, Welzl H, B?ttig K (1988) Maze learning of the Naples High- and Low-Excitability rat lines. Adv Biosci 70: 177–180.
[67]
Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates. London: Academic Press.
[68]
Fumagalli F, Frasca A, Racagni G, Riva MA (2008) Dynamic regulation of glutamatergic postsynaptic activity in rat prefrontal cortex by repeated administration of antipsychotic drugs. Mol Pharmacol 73: 1484–1490 10.1124/mol.107.043786 [doi]. doi: 10.1124/mol.107.043786
[69]
H?lm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6: 65–70.