全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Ruminal Prevotella spp. May Play an Important Role in the Conversion of Plant Lignans into Human Health Beneficial Antioxidants

DOI: 10.1371/journal.pone.0087949

Full-Text   Cite this paper   Add to My Lib

Abstract:

Secoisolariciresinol diglucoside (SDG), the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL), the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4×4 Latin square design and fed with four treatments: control with no flax meal (FM), or 5%, 10% and 15% FM (on a dry matter basis). Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO), with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen.

References

[1]  Prasad K (1997) Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Mol Cell Biochem 168: 117–123.
[2]  Prasad K (2000) Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 9: 220–225. doi: 10.1007/bf01623898
[3]  Raffaelli B, Hoikkala A, Lepp?l? E, W?h?l? K (2002) Enterolignans. J Chromatogr B 777: 29–43. doi: 10.1016/s1570-0232(02)00092-2
[4]  Hu C, Yuan YV, Kitts DD (2007) Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem Toxicol 45: 2219–2227. doi: 10.1016/j.fct.2007.05.017
[5]  Jin JS, Hattori M (2011) A new mammalian lignan precursor, asarinin. Food Chem 124: 895–899. doi: 10.1016/j.foodchem.2010.07.015
[6]  Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29: 95–120. doi: 10.3109/07853899709113696
[7]  C?rtes C, Gagnon N, Benchaar C, Da Silva D, Santos GTD, et al. (2008) In vitro metabolism of flax lignans by ruminal and faecal microbiota of dairy cows. J Appl Microbiol 105: 1585–1594. doi: 10.1111/j.1365-2672.2008.03922.x
[8]  Clavel T, Borrmann D, Braune A, Doré J, Blaut M (2006) Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12: 140–147.
[9]  Morris DH, Flax Council of Canada (2007) Flax: a health and nutrition primer: Flax Council of Canada.
[10]  Clavel T, Henderson G, Engst W, Doré J, Blaut M (2006) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55: 471–478. doi: 10.1111/j.1574-6941.2005.00057.x
[11]  Wang LQ, Meselhy MR, Li Y, Qin GW, Hattori M (2000) Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem Pharm Bull 48: 1606–1610. doi: 10.1248/cpb.48.1606
[12]  Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, et al. (2010) Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol 10: 115. doi: 10.1186/1471-2180-10-115
[13]  Clavel T, Henderson G, Alpert CA, Philippe C, Rigottier-Gois L, et al. (2005) Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol 71: 6077–6085. doi: 10.1128/aem.71.10.6077-6085.2005
[14]  Wang LQ (2002) Mammalian phytoestrogens: enterodiol and enterolactone. J Chromatogr B 777: 289–309. doi: 10.1016/s1570-0232(02)00281-7
[15]  Petit HV, Gagnon N (2009) Milk concentrations of the mammalian lignans enterolactone and enterodiol, milk production, and whole tract digestibility of dairy cows fed diets containing different concentrations of flaxseed meal. Anim Feed Sci Tech 152: 103–111. doi: 10.1016/j.anifeedsci.2009.04.004
[16]  Petit HV, Gagnon N (2009) Concentration of the mammalian lignans enterolactone and enterodiol in milk of cows fed diets containing different concentrations of whole flaxseed. Animal 3: 1428–1435. doi: 10.1017/s1751731109990346
[17]  Zhou W, Wang G, Han Z, Yao W, Zhu W (2009) Metabolism of flaxseed lignans in the rumen and its impact on ruminal metabolism and flora. Anim Feed Sci Tech 150: 18–26. doi: 10.1016/j.anifeedsci.2008.07.006
[18]  Gagnon N, C?rtes C, da Silva D, Kazama R, Benchaar C, et al. (2009) Ruminal metabolism of flaxseed (Linum usitatissimum) lignans to the mammalian lignan enterolactone and its concentration in ruminal fluid, plasma, urine and milk of dairy cows. Brit J Nutr 102: 1015–1023. doi: 10.1017/s0007114509344104
[19]  Gagnon N, C?rtes C, Petit HV (2009) Weekly excretion of the mammalian lignan enterolactone in milk of dairy cows fed flaxseed meal. J Dairy Res 76: 455–458. doi: 10.1017/s0022029909990082
[20]  Petit HV, Gagnon N, Mir PS, Cao R, Cui S (2009) Milk concentration of the mammalian lignan enterolactone, milk production, milk fatty acid profile, and digestibility in dairy cows fed diets containing whole flaxseed or flaxseed meal. J Dairy Res 76: 257–264. doi: 10.1017/s0022029909003999
[21]  Petit HV, Gagnon N (2011) Production performance and milk composition of dairy cows fed different concentrations of flax hulls. Anim Feed Sci Tech 169: 46–52. doi: 10.1016/j.anifeedsci.2011.05.008
[22]  Matumoto-Pintro PT, Petit HV, Giroux HJ, C?rtes C, Gagnon N, et al. (2011) Effect of flaxseed lignans added to milk or fed to cows on oxidative degradation of dairy beverages enriched with polyunsaturated fatty acids. J Dairy Res 78: 111–117. doi: 10.1017/s0022029910000853
[23]  Canadian Council on Animal Care (1993) Guide to the Care and Use of Experimental Animals; Offert ED, Cross BM, McWilliam AA, editors. Ottawa: Canada: CCAC.
[24]  National Research Council (2001) Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001: The National Academies Press.
[25]  Lee M, Harris L, Moorby J, Humphreys M, Theodorou M, et al. (2002) Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of water-soluble carbohydrate. J Anim Sci 74: 587–596.
[26]  Huws SA, Kim EJ, Lee MRF, Scott MB, Tweed JKS, et al. (2011) As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ Microbiol 13: 1500–1512. doi: 10.1111/j.1462-2920.2011.02452.x
[27]  Huws SA, Scott MB, Tweed JKS, Lee MRF (2013) Fatty acid oxidation products (‘green odour’) released from perennial ryegrass following biotic and abiotic stress, potentially have antimicrobial properties against the rumen microbiota resulting in decreased biohydrogenation. J Appl Microbiol 115: 1081–1090. doi: 10.1111/jam.12314
[28]  Blackwood CB, Marsh T, Kim SH, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69: 926–932. doi: 10.1128/aem.69.2.926-932.2003
[29]  Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Meth 70: 565–569. doi: 10.1016/j.mimet.2007.06.013
[30]  Huws SA, Mayorga OL, Theodorou MK, Onime LA, Kim EJ, et al. (2013) Successional colonization of perennial ryegrass by rumen bacteria. Lett Appl Microbiol 56: 186–196. doi: 10.1111/lam.12033
[31]  Kim EJ, Huws SA, Lee MRF, Wood JD, Muetzel SM, et al. (2008) Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J Nutr 138: 889–896.
[32]  Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914–921.
[33]  Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, et al. (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33: D294–D296. doi: 10.1093/nar/gki038
[34]  Hobson PN (1969) Rumen bacteria. Methods Microbiology 3B: 133–149. doi: 10.1016/s0580-9517(08)70504-x
[35]  Nesbitt PD, Lam Y, Thompson LU (1999) Human metabolism of mammalian lignan precursors in raw and processed flaxseed. Am J Clin Nutr 69: 549–555.
[36]  C?rtes C, da Silva-Kazama D, Kazama R, Benchaar C, dos Santos G, et al. (2013) Effects of abomasal infusion of flaxseed (Linum usitatissimum) oil on microbial β-glucuronidase activity and concentration of the mammalian lignan enterolactone in ruminal fluid, plasma, urine and milk of dairy cows. Brit J Nutr 109: 433–440. doi: 10.1017/s0007114512001341
[37]  Penalvo JL, Haajanen KM, Botting N, Adlercreutz H (2005) Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. J Agr Food Chem 53: 9342–9347. doi: 10.1021/jf051488w
[38]  Steinshamn H, Purup S, Thuen E, Hansen-Müller J (2008) Effects of clover-grass silages and concentrate supplementation on the content of phytoestrogens in dairy cow milk. J Dairy Sci 91: 2715–2725.
[39]  Thompson LU, Robb P, Serraino M, Cheung F (1991) Mammalian lignan production from various foods. Nutr Cancer 16: 43–52. doi: 10.1080/01635589109514139
[40]  Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, et al. (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J Microbiol Meth 69: 470–479. doi: 10.1016/j.mimet.2007.02.014
[41]  Casamayor EO, Massana R, Benlloch S, ?vre?s L, Díez B, et al. (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4: 338–348. doi: 10.1046/j.1462-2920.2002.00297.x
[42]  Enwall K, Hallin S (2009) Comparison of T-RFLP and DGGE techniques to assess denitrifier community composition in soil. Lett Appl Microbiol 48: 145–148. doi: 10.1111/j.1472-765x.2008.02498.x
[43]  Beaud D, Tailliez P, Anba-Mondoloni J (2005) Genetic characterization of the ?2-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151: 2323–2330. doi: 10.1099/mic.0.27712-0
[44]  Heinonen S, Nurmi T, Liukkonen K, Poutanen K, W?h?l? K, et al. (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agr Food Chem 49: 3178–3186. doi: 10.1021/jf010038a
[45]  Landete JM (2012) Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res Int 46: 410–424. doi: 10.1016/j.foodres.2011.12.023
[46]  Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, et al. (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27: 663–693. doi: 10.1016/s0168-6445(03)00072-x
[47]  Antignac JP, Cariou R, Bizec BL, André F (2004) New data regarding phytoestrogens content in bovine milk. Food Chem 87: 275–281. doi: 10.1016/j.foodchem.2003.12.013
[48]  H?jer A, Adler S, Purup S, Hansen-Müller J, Martinsson K, et al. (2012) Effects of feeding dairy cows different legume-grass silages on milk phytoestrogen concentration. J Dairy Sci 95: 4526–4540.
[49]  Aura AM, Oikarinen S, Mutanen M, Heinonen SM, Adlercreutz HCT, et al. (2006) Suitability of a batch in vitro fermentation model using human faecal microbiota for prediction of conversion of flaxseed lignans to enterolactone with reference to an in vivo rat model. Eur J Nutr 45: 45–51. doi: 10.1007/s00394-005-0561-z
[50]  Liu Z, Saarinen NM, Thompson LU (2006) Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. JNutr 136: 906–912.
[51]  Borriello SP, Setchell KDR, Axelson M, Lawson AM (1985) Production and metabolism of lignans by the human faecal flora. J Appl Bacteriol 58: 37–43. doi: 10.1111/j.1365-2672.1985.tb01427.x
[52]  Holma R, Kekkonen RA, Hatakka K, Poussa T, Vapaatalo H, et al. (2013) Low serum enterolactone concentration is associated with low colonic Lactobacillus-Enterococcus counts in men but is not affected by a synbiotic mixture in a randomised, placebo-controlled, double-blind, cross-over intervention study. Brit J Nutr 7: 1–9. doi: 10.1017/s0007114513002420

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133