全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Simultaneous Copy Number Losses within Multiple Subtelomeric Regions in Early-Onset Type2 Diabetes Mellitus

DOI: 10.1371/journal.pone.0088602

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genetic factors play very important roles in the onset and progression of type 2 diabetes mellitus (T2DM). However, the genetic factors correlating with T2DM onset have not as yet been fully clarified. We previously found that copy number losses in the subtelomeric region on chromosome 4p16.3 were detected in early-onset Japanese T2DM patients (onset age <35 years) at a high frequency. Herein, we additionally found two novel copy number losses within the subtelomeric regions on chromosomes 16q24.2-3 and 22q13.31-33, which have significant associations with early-onset Japanese T2DM. The associations were statistically significant by Fisher's exact tests with P values of 5.19×10?3 and 1.81×10?3 and odds ratios of 5.7 and 4.4 for 16q24.2-3 and 22q13.31-33, respectively. Furthermore, copy number variation (CNV) analysis of the whole genome using the CNV BeadChip system verified simultaneous copy number losses in all three subtelomeric regions in 11 of our 100 T2DM subjects, while none of 100 non-diabetic controls showed the copy number losses in all three regions. Our results suggest that the mechanism underlying induction of CNVs is involved in the pathogenesis of early-onset T2DM. Thus, copy number losses within multiple subtelomeric regions are strongly associated with early-onset T2DM and examination of simultaneous CNVs in these three regions may lead to the development of an accurate and selective procedure for detecting genetic susceptibility to T2DM.

References

[1]  Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance–a population-based twin study. Diabetologia 42: 139–145. doi: 10.1007/s001250051131
[2]  Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, et al. (1992) Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 35: 1060–1067. doi: 10.1007/bf02221682
[3]  Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49: 2201–2207. doi: 10.2337/diabetes.49.12.2201
[4]  Weijnen CF, Rich SS, Meigs JB, Krolewski AS, Warram JH (2002) Risk of diabetes in siblings of index cases with Type 2 diabetes: implications for genetic studies. Diabet Med 19: 41–50. doi: 10.1046/j.1464-5491.2002.00624.x
[5]  Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, et al. (2001) beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50 Suppl 1: S94–100. doi: 10.2337/diabetes.50.2007.s94
[6]  Katagiri H, Asano T, Ishihara H, Inukai K, Anai M, et al. (1992) Nonsense mutation of glucokinase gene in late-onset non-insulin-dependent diabetes mellitus. Lancet 340: 1316–1317. doi: 10.1016/0140-6736(92)92494-z
[7]  van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, et al. (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1: 368–371. doi: 10.1038/ng0892-368
[8]  Oka Y, Katagiri H, Yazaki Y, Murase T, Kobayashi T (1993) Mitochondrial gene mutation in islet-cell-antibody-positive patients who were initially non-insulin-dependent diabetics. Lancet 342: 527–528. doi: 10.1016/0140-6736(93)91649-7
[9]  Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, et al. (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20: 143–148.
[10]  Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, et al. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38: 320–323. doi: 10.1038/ng1732
[11]  Sakai K, Imamura M, Tanaka Y, Iwata M, Hirose H, et al. (2013) Replication Study for the Association of 9 East Asian GWAS-Derived Loci with Susceptibility to Type 2 Diabetes in a Japanese Population. PLoS One 8: e76317. doi: 10.1371/journal.pone.0076317
[12]  Cho YS, Chen CH, Hu C, Long J, Ong RT, et al. (2012) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44: 67–72. doi: 10.1038/ng.1019
[13]  Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, et al. (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40: 1098–1102. doi: 10.1038/ng.208
[14]  Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, et al. (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40: 1092–1097. doi: 10.1038/ng.207
[15]  Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341–1345. doi: 10.1126/science.1142382
[16]  Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885. doi: 10.1038/nature05616
[17]  Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, et al. (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848–853. doi: 10.1126/science.1136678
[18]  Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, et al. (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307: 1434–1440. doi: 10.1126/science.1101160
[19]  Hayakawa T, Noda M, Yasuda K, Yorifuji H, Taniguchi S, et al. (1998) Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. J Biol Chem 273: 20300–20307. doi: 10.1074/jbc.273.32.20300
[20]  Abderrahmani A, Niederhauser G, Plaisance V, Roehrich ME, Lenain V, et al. (2004) Complexin I regulates glucose-induced secretion in pancreatic beta-cells. J Cell Sci 117: 2239–2247. doi: 10.1242/jcs.01041
[21]  Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, et al. (2006) Global variation in copy number in the human genome. Nature 444: 444–454. doi: 10.1038/nature05329
[22]  Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, et al. (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455: 232–236. doi: 10.1038/nature07229
[23]  Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455: 237–241.
[24]  Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, et al. (2009) Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 46: 242–248. doi: 10.1136/jmg.2008.059907
[25]  Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, et al. (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82: 477–488. doi: 10.1016/j.ajhg.2007.12.009
[26]  Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, et al. (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358: 667–675. doi: 10.1056/nejmoa075974
[27]  Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, et al. (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466: 368–372.
[28]  Zhang D, Cheng L, Qian Y, Alliey-Rodriguez N, Kelsoe JR, et al. (2009) Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry 14: 376–380. doi: 10.1038/mp.2008.144
[29]  Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, et al. (2010) Origins and functional impact of copy number variation in the human genome. Nature 464: 704–712. doi: 10.1038/nature08516
[30]  Park H, Kim JI, Ju YS, Gokcumen O, Mills RE, et al. (2010) Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet 42: 400–405. doi: 10.1038/ng.555
[31]  Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, et al. (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464: 713–720.
[32]  Kudo H, Emi M, Ishigaki Y, Tsunoda U, Hinokio Y, et al. (2011) Frequent loss of genome gap region in 4p16.3 subtelomere in early-onset type 2 diabetes mellitus. Exp Diabetes Res 2011: 498460. doi: 10.1155/2011/498460
[33]  Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, et al. (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci U S A 101: 17765–17770. doi: 10.1073/pnas.0407979101
[34]  Perry GH, Ben-Dor A, Tsalenko A, Sampas N, Rodriguez-Revenga L, et al. (2008) The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet 82: 685–695. doi: 10.1016/j.ajhg.2007.12.010
[35]  de Smith AJ, Tsalenko A, Sampas N, Scheffer A, Yamada NA, et al. (2007) Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum Mol Genet 16: 2783–2794. doi: 10.1093/hmg/ddm208
[36]  Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, et al. (2006) Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 38: 1038–1042. doi: 10.1038/ng1862
[37]  Lupski JR (2009) Genomic disorders ten years on. Genome Med 1: 42. doi: 10.1186/gm42
[38]  Swartz DA, Park EI, Visek WJ, Kaput J (1996) The e subunit gene of murine F1F0-ATP synthase. Genomic sequence, chromosomal mapping, and diet regulation. J Biol Chem 271: 20942–20948. doi: 10.1074/jbc.271.34.20942
[39]  Kimura SH, Tsuruga H, Yabuta N, Endo Y, Nojima H (1997) Structure, expression, and chromosomal localization of human GAK. Genomics 44: 179–187. doi: 10.1006/geno.1997.4873
[40]  Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, et al. (2005) Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med 11: 1104–1108. doi: 10.1038/nm1299
[41]  Flavell DM, Ireland H, Stephens JW, Hawe E, Acharya J, et al. (2005) Peroxisome proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes. Diabetes 54: 582–586. doi: 10.2337/diabetes.54.2.582

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133