Suppression of Graft Regeneration, Not Ischemia/Reperfusion Injury, Is the Primary Cause of Small-for-Size Syndrome after Partial Liver Transplantation in Mice
Background Ischemia/reperfusion injury (IRI) is commonly considered to play a crucial role in the pathogenesis of small-for-size syndrome (SFSS) after liver transplantation. Rapid regeneration is also considered essential for the survival of SFS grafts. Methods Mouse models of full-size orthotopic liver transplantation, 50% partial liver transplantation and 30% partial liver transplantation were established. Survival rate and serum alanine aminotransferase were observed. IRI was assessed by hepatic pathologic alterations, apoptosis and necrosis. Regeneration response was detected by mitotic index, BrdU incorporation and PCNA, Cyclin D1 and Cyclin E expression. The expression of mTOR, AKT, ERK, JNK2 and p70S6K, also involved in regeneration signaling pathways, were analyzed as well. Results 30% partial liver graft resulted in a significantly low 7-day survival rate (P = 0.002) with no marked difference in tissue injury compared with the 50% partial graft group. Serum alanine aminotransferase levels were not significantly different between partial transplantation and full-size transplantation. Western blot analysis of caspase-3 and TUNEL staining also indicated no significant difference in apoptosis response between 30% partial transplantation and half-size or full-size transplantation (P = 0.436, P = 0.113, respectively). However, liver regeneration response indicators, mitotic index (P<0.0001) and BrdU (P = 0.0022), were markedly lower in 30% LTx compared with 50% LTx. Suppressed expression of PCNA, cyclin D1, cyclin E, mTOR, JNK2, AKT, ERK and p70S6K was also detected by western blot. Conclusions Liver regeneration is markedly suppressed in SFSS, and is more likely the primary cause of SFSS, rather than ischemia/reperfusion injury. Therapy for recovering graft regeneration could be a potentially important strategy to reduce the incidence of SFSS.
References
[1]
Cheng YF, Huang TL, Chen TY, Tsang LL, Ou HY, et al. (2009) Liver Graft Regeneration in Right Lobe Adult Living Donor Liver Transplantation. American Journal of Transplantation 9(6): 1382–1388. doi: 10.1111/j.1600-6143.2009.02626.x
[2]
Liu Q, Rehman H, Harley RA, Lemasters JJ, Zhong Z (2012) Small-for-Size Liver Transplantation Increases Pulmonary Injury in Rats: Prevention by NIM811. HPBSurgery 2012: 1–13. doi: 10.1097/00007890-201211271-01277
[3]
Lu CH, Chen TY, Huang TL, Tsang LL, Ou HY, et al. (2012) Regeneration and outcome of dual grafts in living donor liver transplantation. Clinical Transplantation 26(2): E143–E148. doi: 10.1111/j.1399-0012.2012.01621.x
[4]
Furukawa H, Kishida A, Omura T, Kamiyama T, Suzuki T, et al. (1999) Indication and strategy for adult living related liver transplantation. Transplant Proc 31: 1952. doi: 10.1016/s0041-1345(99)00225-0
[5]
Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, et al. (1999) Impact of Graft Size Mismatching on Graft Prognosis in Liver Transplantation From Living. Donors. Transplantation 67(2): 321–327. doi: 10.1097/00007890-199901270-00024
[6]
Kawasaki S, Makuuchi M, Ishizone S, Matsunami H, Terada M, et al. (1992) Liver regeneration in recipients and donors after transplantation. Lancet 339: 580–581. doi: 10.1016/0140-6736(92)90867-3
[7]
Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, et al. (2003) Small-for-size graft in living donor liver transplantation: How far should we go? Liver Transplantation 9(9): S29–S35. doi: 10.1053/jlts.2003.50198
[8]
Strasberg SM, Howard TK, Molmenti EP, Hertl M (1994) Selecting the donor liver: risk factors for poor function after orthotopic liver transplantation. Hepatology 20: 829–838. doi: 10.1002/hep.1840200410
[9]
Selzner M, Camargo CA, Clavien PA (1999) Ischemia impairs liver regeneration after major tissue loss in rodents: protective effects of interleukin-6. Hepatology 30: 469–475. doi: 10.1002/hep.510300215
[10]
Suzuki S, Inaba K, Konno H (2008) Ischemic preconditioning in hepatic ischemia and reperfusion. Current Opinoin in Organ Transplantation 13(2): 142–147. doi: 10.1097/mot.0b013e3282f6a164
[11]
Fernandez L, Heredia N, Peralta C, Xaus C, Rosello-Catafau J, et al. (2003) Role of ischemic preconditioning and the portosystemic shunt in the prevention of liver and lung damage after rat liver transplantation. Transplantation 76: 282–289. doi: 10.1097/01.tp.0000067529.82245.4e
[12]
Guo JY, Yang T, Sun XG, Zhou NY, Li FS, et al. (2011) Ischemic postconditioning attenuates liver warm ischemia-reperfusion injury through Akt-eNOS-NO-HIF pathway. Journal of Biomedical Science 18: 79–90. doi: 10.1186/1423-0127-18-79
[13]
Hong F, Yang S (2012) Ischemic preconditioning decreased leukotriene C4 formation by depressing leukotriene C4 synthase expression and activity during hepatic I/R injury in rats. Journal of Surgical Research 178(2): 1015–1021. doi: 10.1016/j.jss.2012.07.061
[14]
Yao A, Li X, Pu L, Zhong J, Liu X, et al. (2007) Impaired hepatic regeneration by ischemic preconditioning in a rat model of small-for-size liver transplantation. Transplant Immunology 18(1): 37–43. doi: 10.1016/j.trim.2007.02.002
[15]
Tian Y, Graf R, Jochum W, Clavien PA (2003) Arterialized partial orthotopic liver transplantation in the mouse: A new model and evaluation of the critical liver mass. Liver Transplantation 9(8): 789–795. doi: 10.1053/jlts.2003.50170
[16]
Tian Y, Jochum W, Georgiev P, Moritz W, Graf R (2006) Kupffer cell-dependent TNF-alpha signaling mediates injury in the arterialized small-for-size liver transplantation in the mouse. Proceedings of the National Academy of Sciences 103(12): 4598–4603. doi: 10.1073/pnas.0600499103
[17]
Zhong Z, Schwabe RF, Kai Y, He L, Yang L, et al. (2006) Liver Regeneration Is Suppressed in Small-for-Size Liver Grafts after Transplantation: Involvement of c-Jun N-terminal Kinase, Cyclin D1, and Defective Energy Supply. Transplantation 82(2): 241–250. doi: 10.1097/01.tp.0000228867.98158.d2
[18]
Fu WY, Yan JQ, Shi MM, Ma D, Peng CH, et al. (2012) Suppression of liver regeneration affects hepatic graft survival in small-for-size liver transplantation in rats. Hepatology Research 43(3): 300–310. doi: 10.1111/j.1872-034x.2012.01071.x
[19]
Theruvath TP, Czerny C, Ramshesh VK, Zhong Z, Chavin KD, et al. (2008) C-Jun N-Terminal Kinase 2 Promotes Graft Injury via the Mitochondrial Permeability Transition After Mouse Liver Transplantation. American Journal of Transplantation 8(9): 1819–1828. doi: 10.1111/j.1600-6143.2008.02336.x
[20]
Liu Q, Rehman H, Krishnasamy Y, Haque K, Schnellmann RG, et al. (2012) Amphiregulin Stimulates Liver Regeneration After Small-for-Size Mouse Liver Transplantation. American Journal of Transplantation 12(8): 2052–2061. doi: 10.1111/j.1600-6143.2012.04069.x
[21]
Lema Zuluaga GL, Serna Agudelo RE, Zuleta Tobón JJ (2013) Preservation Solutions for Liver Transplantation in Adults: Celsior versus Custodiol: A Systematic Review and Meta-analysis With an Indirect Comparison of Randomized Trials. Transplantation Proceedings 45(1): 25–32. doi: 10.1016/j.transproceed.2012.02.031
[22]
Rehman H, Sun J, Shi Y, Ramshesh VK, Liu Q, et al. (2010) NIM811 Prevents Mitochondrial Dysfunction, Attenuates Liver Injury, and Stimulates Liver Regeneration After Massive Hepatectomy. Transplantation 91(4): 406–12. doi: 10.1097/tp.0b013e318204bdb2
[23]
Dahm F, Georgiev P, Clavien PA, et al. (2005) Small-for-Size Syndrome After Partial Liver Transplantation: Definition, Mechanisms of Disease and Clinical Implications. American Journal of Transplantation 5(11): 2605–2610. doi: 10.1111/j.1600-6143.2005.01081.x
[24]
Tucker ON, Heaton N (2005) The ‘small for size’liver syndrome. Curr Opin Crit Care 11: 150–155.
[25]
Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, et al. (1996) Liver Failure and Defective Hepatocyte Regeneration in Interleukin-6-Deficient Mice. Science 274: 1379–1383. doi: 10.1126/science.274.5291.1379
[26]
Man K, Lo CM, Ng IO, Wong YC, Qin LF, et al. (2001) Liver Transplantation in Rats Using Small-for-Size Grafts. Arch Surg 136: 280–285. doi: 10.1001/archsurg.136.3.280
[27]
Fu QX, Duan CG, Yan SD, Wang LC, Zhou Y, et al. (2013) Bioluminescence imaging of caspase-3 activity in mouse liver. Apoptosis 18(8): 998–1007. doi: 10.1007/s10495-013-0849-z
[28]
Teoh NC, Farrell GC (2003) Hepatic ischemia reperfusion injury: Pathogenic machanisms and basis for hepatoprotection. Journal of Gastroenterology and Hepatology 18: 891–902. doi: 10.1046/j.1440-1746.2003.03056.x
[29]
Cursio R, Gugenheim J, Ricci JE, Crenesse D, Rostagno P, et al. (1999) A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis. FASEB J 13: 253–261. doi: 10.1111/j.1432-2277.2000.tb02108.x
[30]
Humar A, Kosari K, Sielaff TD, Glessing B, Gomes M, et al. (2004) Liver regeneration after adult living donor and deceased donor split-liver transplants. Liver Transplantation10(3): 374–378. doi: 10.1002/lt.20096
[31]
Yao AH, Yang Y, Li XC, Pu LY, Zhong JW, et al. (2010) Hepatic Regenerative Response in Small-Sized Liver Isografts in the Rat. Journal of Surgical Research 161(2): 328–335. doi: 10.1016/j.jss.2009.02.013
[32]
Fausto N, Campbell JS, Riehle KJ, et al. (2012) Liver regeneration. Journal of Hepatology 57(3): 692–694. doi: 10.1016/j.jhep.2012.04.016
[33]
Nelson, C J, D. G Rickheim, et al. (2001) Transient Expression of Cyclin D1 Is Sufficient to Promote Hepatocyte Replication and Liver Growth in Vivo. Cancer Research 61: 8564–8568.
[34]
Mangnall D, Bird NC, Majeed AW (2003) The molecular physiology of liver regeneration following partial hepatectomy. Liver International 23(2): 124–138. doi: 10.1034/j.1600-0676.2003.00812.x
[35]
Buitrago-Molina LE, Pothiraju D, Lamlé J, Marhenke S, Kossatz U, et al. (2009) Rapamycin delays tumor development in murine livers by inhibiting proliferation of hepatocytes with DNA damage. Hepatology 50(2): 500–509. doi: 10.1002/hep.23014
[36]
Zhang S, Liu X, Zhang Y, Cheng Y, Li Y (2013) RNAi screening identifies KAT8 as a key molecule important for cancer cell survival. International Journal of Clinical & Experimental Pathology 6(5): 870–877.
[37]
Nevzorova YA, Tschaharganeh D, Gassler N, Geng Y, Weiskirchen R, et al. (2009) Aberrant Cell Cycle Progression and Endoreplication in Regenerating Livers of Mice That Lack a Single E-Type Cyclin. Gastroenterology 137(2): 691–703.e696. doi: 10.1053/j.gastro.2009.05.003
[38]
Oka K, Ohya-Shimada W, Mizuno S, Nakamura T (2013) Up-regulation of cyclin-E1 via proline-mTOR pathway is responsible for HGF-mediated G1/S progression in the primary culture of rat hepatocytes. Biochemical and Biophysical Research Communications 435(1): 120–5. doi: 10.1016/j.bbrc.2013.04.052
[39]
Taki-Eldin A, Zhou L, Xie HY, Zheng SS, et al. (2012) Liver Regeneration after Liver Transplantation. Europen Surgical Research48: 139–153. doi: 10.1159/000337865
[40]
Fausto N, Campbell JS, Riehle KJ, et al. (2006) Liver regeneration. Hepatology 43(S1): S45–S53. doi: 10.1002/hep.20969
Liu HX, Fang Y, Hu Y, Gonzalez FJ, Fang J, et al. (2013) PPARβ Regulates Liver Regeneration by Modulating Akt and E2f Signaling. PLoS ONE 8(6): e65644. doi: 10.1371/journal.pone.0065644
[43]
Schwabe RF, Bradham CA, Uehara T, Hatano E, Bennett BL, et al. (2003) c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology 37(4): 824–832. doi: 10.1053/jhep.2003.50135