全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Quantitative Assessment of the Effect of KCNJ11 Gene Polymorphism on the Risk of Type 2 Diabetes

DOI: 10.1371/journal.pone.0093961

Full-Text   Cite this paper   Add to My Lib

Abstract:

To clarify the role of potassium inwardly-rectifying-channel, subfamily-J, member 11 (KCNJ11) variation in susceptibility to type 2 diabetes (T2D), we performed a systematic meta-analysis to investigate the association between the KCNJ11 E23K polymorphism (rs5219) and the T2D in different genetic models. Databases including PubMed, Medline, EMBASE, and ISI Web of Science were searched to identify relevant studies. A total of 48 published studies involving 56,349 T2D cases, 81,800 controls, and 483 family trios were included in this meta-analysis. Overall, the E23K polymorphism was significantly associated with increased T2D risk with per-allele odds ratio (OR) of 1.12 (95% CI: 1.09–1.16; P<10?5). The summary OR for T2D was 1.09 (95% CI: 1.03–1.14; P<10?5), and 1.26 (95% CI: 1.17–1.35; P<10?5), for heterozygous and homozygous, respectively. Similar results were also detected under dominant and recessive genetic models. When stratified by ethnicity, significantly increased risks were found for the polymorphism in Caucasians and East Asians. However, no such associations were detected among Indian and other ethnic populations. Significant associations were also observed in the stratified analyses according to different mean BMI of cases and sample size. Although significant between study heterogeneity was identified, meta-regression analysis suggested that the BMI of controls significantly correlated with the magnitude of the genetic effect. The current meta-analysis demonstrated that a modest but statistically significant effect of the 23K allele of rs5219 polymorphism in susceptibility to T2D. But the contribution of its genetic variants to the epidemic of T2D in Indian and other ethnic populations appears to be relatively low.

References

[1]  Bell GI, Polonsky KS (2001) Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 414: 788–791. doi: 10.1038/414788a
[2]  Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20: 101–135. doi: 10.1210/er.20.2.101
[3]  Smith AJ, Taneja TK, Mankouri J, Sivaprasadao A (2007) Molecular cell biology of KATP channels: implications for neonatal diabetes. Expert Rev Mol Med 9: 1–17. doi: 10.1017/s1462399407000403
[4]  Nichols CG, Koster JC, Remedi MS (2007) b-cell hyperexcitability: from hyperinsulinism to diabetes. Diabetes Obes Metab 9: 81–88. doi: 10.1111/j.1463-1326.2007.00778.x
[5]  Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, et al. (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95: 10402–10406. doi: 10.1073/pnas.95.18.10402
[6]  Sakura H, Wat N, Horton V, Millns H, Turner RC, et al. (1996) Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in white Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 39: 1233–1236. doi: 10.1007/bf02658512
[7]  Colditz GA, Burdick E, Mosteller F (1995) Heterogeneity in meta-analysis of data from epidemiologic studies: a commentary. Am J Epidemiol 142: 371–382.
[8]  DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188. doi: 10.1016/0197-2456(86)90046-2
[9]  Woolf B (1955) On estimating the relation between blood group and disease. Ann Hum Genet 19: 251–253. doi: 10.1111/j.1469-1809.1955.tb01348.x
[10]  Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52: 506–516.
[11]  Song Y, Niu T, Manson JE, Kwiatkowski DJ, Liu S (2004) Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies. Am J Hum Genet 74: 208–222. doi: 10.1086/381400
[12]  Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33: 177–182. doi: 10.1038/ng1071
[13]  Cugino D, Gianfagna F, Santimone I, de Gaetano G, Donati MB, et al. (2012) Type 2 diabetes and polymorphisms on chromosome 9p21: A meta-analysis. Nutr Metab Cardiovasc Dis 22: 619–625. doi: 10.1016/j.numecd.2010.11.010
[14]  Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634. 80 Ardlie KG, Lunetta KL, Seielstad M (2002) Testing for population subdivision and association in four case–control studies. Am J Hum Genet 71: 304–311.
[15]  Sakura H, Wat N, Horton V, Millns H, Turner RC, et al. (1996) Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 39: 1233–1236. doi: 10.1007/bf02658512
[16]  Inoue H, Ferrer J, Warren-Perry M, Zhang Y, Millns H, et al. (1997) Sequence variants in the pancreatic islet beta-cell inwardly rectifying K+ channel Kir6.2 (Bir) gene: identification and lack of role in Caucasian patients with NIDDM. Diabetes 46: 502–507. doi: 10.2337/diabetes.46.3.502
[17]  Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, et al. (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 41: 1511–1515. doi: 10.1007/s001250051098
[18]  Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, et al. (2000) The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26: 76–80.
[19]  Yamada Y, Kuroe A, Li Q, Someya Y, Kubota A, et al. (2001) Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients. Diabetes Metab Res. Rev 17: 213–216. doi: 10.1002/dmrr.193
[20]  Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, et al. (2001) Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diabet Med 18: 206–212. doi: 10.1046/j.1464-5491.2001.00449.x
[21]  Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T, et al. (2004) Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53: 1360–1368. doi: 10.2337/diabetes.53.5.1360
[22]  Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, et al. (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1: E20. doi: 10.1371/journal.pbio.0000020
[23]  Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, et al. (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52: 568–572. doi: 10.2337/diabetes.52.2.568
[24]  Hansen SK, Nielsen EM, Ek J, Andersen G, Glümer C, et al. (2005) Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes. J Clin Endocrinol Metab 90: 3629–3637. doi: 10.1210/jc.2004-1942
[25]  van Dam RM, Hoebee B, Seidell JC, Schaap MM, de Bruin TW, et al. (2005) Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses. Diabet Med 22: 590–598. doi: 10.1111/j.1464-5491.2005.01465.x
[26]  Yokoi N, Kanamori M, Horikawa Y, Takeda J, Sanke T, et al. (2006) Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes 55: 2379–2386. doi: 10.2337/db05-1203
[27]  Liu Z, Zhang YW, Feng QP, Li YF, Wu GD, et al. (2006) Association analysis of 30 type 2 diabetes candidate genes in Chinese Han population. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 28: 124–128.
[28]  Weedon MN, McCarthy MI, Hitman G, Walker M, Groves CJ, et al. (2006) Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS Med 3: e374. doi: 10.1371/journal.pmed.0030374
[29]  Sale MM, Smith SG, Mychaleckyj JC, Keene KL, Langefeld CD, et al. (2007) Variants of the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in an African-American population enriched for nephropathy. Diabetes 56: 2638–2642. doi: 10.2337/db07-0012
[30]  Koo BK, Cho YM, Park BL, Cheong HS, Shin HD, et al. (2007) Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med 24: 178–186. doi: 10.1111/j.1464-5491.2006.02050.x
[31]  Sakamoto Y, Inoue H, Keshavarz P, Miyawaki K, Yamaguchi Y, et al. (2007) SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet 52: 781–793. doi: 10.1007/s10038-007-0190-x
[32]  Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331–1336. doi: 10.1126/science.1142358
[33]  Vaxillaire M, Veslot J, Dina C, Proen?a C, Cauchi S, et al. (2008) Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57: 244–254. doi: 10.2337/db07-0615
[34]  Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341–1345. doi: 10.1126/science.1142382
[35]  Willer CJ, Bonnycastle LL, Conneely KN, Duren WL, Jackson AU, et al. (2007) Screening of 134 single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes replicates association with 12 SNPs in nine genes. Diabetes 56: 256–264. doi: 10.2337/db06-0461
[36]  Qi L, van Dam RM, Asselbergs FW, Hu FB (2007) Gene-gene interactions between HNF4A and KCNJ11 in predicting Type 2 diabetes in women. Diabet Med 24: 1187–1191. doi: 10.1111/j.1464-5491.2007.02255.x
[37]  Cejková P, Novota P, Cerná M, Kolostová K, Nováková D, et al. (2007) KCNJ11 E23K polymorphism and diabetes mellitus with adult onset in Czech patients. Folia Biol (Praha). 53: 173–175.
[38]  Doi Y, Kubo M, Ninomiya T, Yonemoto K, Iwase M, et al. (2007) Impact of Kir6.2 E23K polymorphism on the development of type 2 diabetes in a general Japanese population: The Hisayama Study. Diabetes 56: 2829–2833. doi: 10.2337/db06-1709
[39]  Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, et al. (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359: 2220–2232. doi: 10.1056/nejmoa0801869
[40]  Alsmadi O, Al-Rubeaan K, Wakil SM, Imtiaz F, Mohamed G, et al. (2008) Genetic study of Saudi diabetes (GSSD): significant association of the KCNJ11 E23K polymorphism with type 2 diabetes. Diabetes Metab Res Rev 24: 137–140. doi: 10.1002/dmrr.777
[41]  Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, et al. (2009) Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58: 1690–1699. doi: 10.2337/db08-1494
[42]  Peng SB, Su Y, Han DL, Zhang ZR (2008) Association analyses of KCNJ11 gene polymorphisms with type 2 diabetes mellitus. Yueyang Zhi Ye Ji Shu Xue Yuan Xue Bao 23: 77–80.
[43]  Bronstein M, Pisanté A, Yakir B, Darvasi A (2008) Type 2 diabetes susceptibility loci in the Ashkenazi Jewish population. Hum Genet 124: 101–104. doi: 10.1007/s00439-008-0520-x
[44]  Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, et al. (2008) Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet 9: 59. doi: 10.1186/1471-2350-9-59
[45]  Cauchi S, Nead KT, Choquet H, Horber F, Potoczna N, et al. (2008) The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet 9: 45. doi: 10.1186/1471-2350-9-45
[46]  Ezzidi I, Mtiraoui N, Cauchi S, Vaillant E, Dechaume A, et al. (2009) Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study. BMC Med Genet 10: 33. doi: 10.1186/1471-2350-10-33
[47]  Zhou D, Zhang D, Liu Y, Zhao T, Chen Z, et al. (2009) The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet 54: 433–435. doi: 10.1038/jhg.2009.54
[48]  Chistiakov DA, Potapov VA, Khodirev DC, Shamkhalova MS, Shestakova MV, et al. (2009) Genetic variations in the pancreatic ATP-sensitive potassium channel, beta-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol 46: 43–49. doi: 10.1007/s00592-008-0056-5
[49]  Wang F, Han XY, Ren Q, Zhang XY, Han LC, et al. (2009) Effect of genetic variants in KCNJ11, ABCC8, PPARG and HNF4A loci on the susceptibility of type 2 diabetes in Chinese Han population. Chin Med J (Engl) 122: 2477–2482.
[50]  Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I, et al. (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58: 493–498. doi: 10.2337/db07-1785
[51]  Thorsby PM, Midthjell K, Gjerlaugsen N, Holmen J, Hanssen KF, et al. (2009) Comparison of genetic risk in three candidate genes (TCF7L2, PPARG, KCNJ11) with traditional risk factors for type 2 diabetes in a population-based study–the HUNT study. Scand J Clin Lab Invest 69: 282–287. doi: 10.1080/00365510802538188
[52]  Hu C, Zhang R, Wang C, Wang J, Ma X, et al. (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4: e7643. doi: 10.1371/journal.pone.0007643
[53]  Yamauchi T, Hara K, Maeda S (2010) A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet 42: 864–868. doi: 10.1038/ng.660
[54]  Neuman RJ, Wasson J, Atzmon G, Wainstein J, Yerushalmi Y, et al. (2010) Gene-gene interactions lead to higher risk for development of type 2 diabetes in an Ashkenazi Jewish population. PLoS One 5: e9903. doi: 10.1371/journal.pone.0009903
[55]  Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, et al. (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2 and CDKAL1 on the risk of type 2 diabetes in 5164 Indians. Diabetes 59: 2068–2074. doi: 10.2337/db10-0868
[56]  Gupta V, Khadgawat R, Ng HK, Kumar S, Aggarwal A, et al. (2010) A validation study of type 2 diabetes-related variants of the TCF7L2, HHEX, KCNJ11, and ADIPOQ genes in one endogamous ethnic group of north India. Ann Hum Genet 74: 361–368. doi: 10.1111/j.1469-1809.2010.00580.x
[57]  Wen J, R?nn T, Olsson A, Yang Z, Lu B, et al. (2010) Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One 5: e9153. doi: 10.1371/journal.pone.0009153
[58]  Rees SD, Hydrie MZ, Shera AS, Kumar S, O'Hare JP, et al. (2011) Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia 54: 1368–1374. doi: 10.1007/s00125-011-2063-2
[59]  Chavali S, Mahajan A, Tabassum R, Dwivedi OP, Chauhan G, et al. (2011) Association of variants in genes involved in pancreatic β-cell development and function with type 2 diabetes in North Indians. J Hum Genet 56: 695–700. doi: 10.1038/jhg.2011.83
[60]  Cheung CY, Tso AW, Cheung BM, Xu A, Fong CH, et al. (2011) The KCNJ11 E23K polymorphism and progression of glycaemia in Southern Chinese: a long-term prospective study. PLoS One 6: e28598. doi: 10.1371/journal.pone.0028598
[61]  Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H, Vázquez-Cárdenas P, Ordó?ez-Sánchez ML, et al. (2012) Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes 61: 3314–21. doi: 10.2337/db11-0550
[62]  Gonen MS, Arikoglu H, Erkoc Kaya D, Ozdemir H, Ipekci SH, et al. (2012) Effects of single nucleotide polymorphisms in K(ATP) channel genes on type 2 diabetes in a Turkish population. Arch Med Res 43: 317–23. doi: 10.1016/j.arcmed.2012.06.001
[63]  Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, et al. (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52: 573–577. doi: 10.2337/diabetes.52.2.573
[64]  Lyssenko V, Almgren P, Anevski D, Orho-Melander M, Sjogren M, et al. (2005) The Botnia Study Group: genetic prediction of future type 2 diabetes. PLoS Med 2: e345. doi: 10.1371/journal.pmed.0020345
[65]  Schwanstecher C, Meyer U, Schwanstecher M (2002) KIR6.2 polymorphism predisposes to type 2 diabetes by inducing over-activity of pancreatic b-cell ATP-sensitive K channels. Diabetes 51: 875–879. doi: 10.2337/diabetes.51.3.875
[66]  van Dam RM, Hoebee B, Seidell JC, Schaap MM, de Bruin TWA, et al. (2005) Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses. Diabet Med 22:590–598. Li YY (2013) The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-analysis of 6,109 subjects. Mol Biol Rep 40: 141–6. doi: 10.1111/j.1464-5491.2005.01465.x
[67]  Laukkanen O, Pihlajam?ki J, Lindstr?m J, Eriksson J, Valle TT, et al. (2004) Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) Genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study. J Clin Endocrinol Metab 89: 6286–6290. doi: 10.1210/jc.2004-1204
[68]  Riedel MJ, Light PE (2005) Saturated and cis/trans unsaturated acyl CoA esters differentially regulate wild-type and polymorphic b-cell ATP-sensitive K+ channels. Diabetes 54: 2070–2079. doi: 10.2337/diabetes.54.7.2070
[69]  Ardlie KG, Lunetta KL, Seielstad M (2002) Testing for population subdivision and association in four case–control studies. Am J Hum Genet 71: 304–311. doi: 10.1086/341719
[70]  Song Y, Niu T, Manson JE, Kwiatkowski DJ, Liu S (2004) Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies. Am J Hum Genet 74: 208–222. doi: 10.1086/381400
[71]  Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, et al. (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 6: e1000847. doi: 10.1371/journal.pgen.1000847
[72]  Yang L, Zhou X, Luo Y, Sun X, Tang Y, et al. (2012) Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals. Mol Biol Rep 39: 645–59. doi: 10.1007/s11033-011-0782-6
[73]  Li YY (2013) The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-analysis of 6,109 subjects. Mol Biol Rep 40: 141–6. doi: 10.1007/s11033-012-2042-9
[74]  Qin LJ, Lv Y, Huang QY (2013) Meta-analysis of association of common variants in the KCNJ11-ABCC8 region with type 2 diabetes. Genet Mol Res 12: 2990–3002. doi: 10.4238/2013.august.20.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133