全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae

DOI: 10.1371/journal.pone.0094028

Full-Text   Cite this paper   Add to My Lib

Abstract:

Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes within a single cell. Here we validate a set of genetic tools that enable protein targeting to distinct subcellular locations, and present two complementary methods for multigene engineering in the eukaryotic green microalga Chlamydomonas reinhardtii. The tools described here will enable advanced metabolic and genetic engineering to promote microalgae biotechnology and product commercialization.

References

[1]  Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32: 1373–1383 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2941057&tool=pmcentrez?&rendertype=abstract. Accessed 9 August 2013.
[2]  Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23: 346–351 Available: http://www.ncbi.nlm.nih.gov/pubmed/22104?720. Accessed 14 August 2013.
[3]  Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65: 635–648 Available: http://www.ncbi.nlm.nih.gov/pubmed/15300?417. Accessed 17 August 2013.
[4]  Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101: 87–96 Available: http://www.ncbi.nlm.nih.gov/pubmed/16569?602. Accessed 8 August 2013.
[5]  Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34: 77–88 Available: http://www.ncbi.nlm.nih.gov/pubmed/18568?862. Accessed 6 August 2013.
[6]  TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24: 629–641 Available: http://www.ncbi.nlm.nih.gov/pubmed/16136?314. Accessed 9 August 2013.
[7]  Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. 20: 459–466 Available: http://www.ncbi.nlm.nih.gov/pubmed/12919?832. Accessed 12 August 2013.
[8]  Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62: 794–799 Available: http://www.ncbi.nlm.nih.gov/pubmed/21574?818. Accessed 27 August 2013.
[9]  Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26: 126–131 Available: http://www.ncbi.nlm.nih.gov/pubmed/18221?809. Accessed 7 August 2013.
[10]  Barnes D, Franklin S, Schultz J, Henry R, Brown E, et al. (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274: 625–636 Available: http://www.ncbi.nlm.nih.gov/pubmed/16231?149. Accessed 5 August 2013.
[11]  Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, et al. (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18: 126–133 Available: http://www.ncbi.nlm.nih.gov/pubmed/17317?144. Accessed 8 August 2013.
[12]  JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19: 430–436. Available: http://www.ncbi.nlm.nih.gov/pubmed/18725?295. Accessed 6 August 2013.
[13]  Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9: 486–501 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2863401&tool=pmcentrez?&rendertype=abstract. Accessed 9 August 2013.
[14]  Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488: 329–335 Available: http://www.ncbi.nlm.nih.gov/pubmed/22895?338. Accessed 8 August 2013.
[15]  Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24: 405–413 Available: http://www.ncbi.nlm.nih.gov/pubmed/23647?970. Accessed 7 August 2013.
[16]  Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17: 489–495 Available: http://dx.doi.org/10.1016/j.cbpa.2013.03?.038. Accessed 13 August 2013.
[17]  Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20: 264–271 Available: http://www.ncbi.nlm.nih.gov/pubmed/19560?336. Accessed 7 August 2013.
[18]  Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38: 1879–1890 Available: http://www.ncbi.nlm.nih.gov/pubmed/21882?013. Accessed 6 August 2013.
[19]  Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1: 763–784 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3152439&tool=pmcentrez?&rendertype=abstract.
[20]  Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9: 925–945 Available: http://www.plantcell.org/content/9/6/925?.abstract. Accessed 27 August 2013.
[21]  Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii+. Plant J 19: 353–361 Available: http://doi.wiley.com/10.1046/j.1365-313X?.1999.00526.x. Accessed 27 August 2013.
[22]  Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57: 1140–1150 Available: http://www.ncbi.nlm.nih.gov/pubmed/19036?032. Accessed 21 August 2013.
[23]  Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, et al. (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7: e43349 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3427385&tool=pmcentrez?&rendertype=abstract. Accessed 30 July 2013.
[24]  Rasala BA, Barrera DJ, Ng J, Plucinak TM, Rosenberg JN, et al. (2013) Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J 74: 545–556 Available: http://www.ncbi.nlm.nih.gov/pubmed/23521?393. Accessed 5 August 2013.
[25]  Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, et al. (2001) Analysis of the aphthovirus 2A/2B polyprotein “cleavage” mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal “skip”. J Gen Virol 82: 1013–1025 Available: http://www.ncbi.nlm.nih.gov/pubmed/11297?676. Accessed 3 March 2014.
[26]  De Felipe P (2004) Skipping the co-expression problem: the new 2A “CHYSEL” technology. Genet Vaccines Ther 2: 13 Available: http://www.gvt-journal.com/content/2/1/1?3. Accessed 16 August 2013.
[27]  Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499–509 Available: http://dx.doi.org/10.1016/0092-8674(84)9?0457-4. Accessed 27 August 2013.
[28]  Morris GJ, Coulson GE, Leeson EA (1985) Changes in the shape of mitochondria following osmotic stress to the unicellular green alga Chlamydomonas reinhardii. J Cell Sci 76: 145–153 Available: http://www.ncbi.nlm.nih.gov/pubmed/39058?35. Accessed 27 August 2013.
[29]  Ehara T, Osafune T, Hase E (1995) Behavior of mitochondria in synchronized cells of Chlamydomonas reinhardtii (Chlorophyta). J Cell Sci 108 (Pt 2: 499–507 Available: http://www.ncbi.nlm.nih.gov/pubmed/77689?96. Accessed 27 August 2013.
[30]  Hiramatsu T, Nakamura S, Misumi O, Kuroiwa T (2006) Morphological Changes In Mitochondrial And Chloroplast Nucleoids And Mitochondria During The Chlamydomonas Reinhardtii (Chlorophyceae) Cell Cycle. J Phycol 42: 1048–1058 Available: http://doi.wiley.com/10.1111/j.1529-8817?.2006.00259.x. Accessed 27 August 2013.
[31]  Harris EH, Stern DB, Witman GB (2009) The Chlamydomonas Sourcebook. Second Edi. Elsevier Available: http://dx.doi.org/10.1016/B978-0-12-3708?73-1.00002-2. Accessed 28 August 2013.
[32]  Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265: 888–894 Available: http://www.ncbi.nlm.nih.gov/pubmed/11523?806. Accessed 27 August 2013.
[33]  Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3: 944–950 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1307613&tool=pmcentrez?&rendertype=abstract. Accessed 27 August 2013.
[34]  Gomord V, Denmat L-A, Fitchette-Laine A-C, Satiat-Jeunemaitre B, Hawes C, et al. (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11: 313–325 Available: http://doi.wiley.com/10.1046/j.1365-313X?.1997.11020313.x. Accessed 27 August 2013.
[35]  De Hostos EL, Togasaki RK, Grossman A (1988) Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinhardtii. J Cell Biol 106: 29–37 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2114941&tool=pmcentrez?&rendertype=abstract. Accessed 28 August 2013.
[36]  Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82: 221–240 Available: http://www.ncbi.nlm.nih.gov/pubmed/16143?837. Accessed 28 August 2013.
[37]  Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, et al. (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6: e18556 Available: http://dx.plos.org/10.1371/journal.pone.?0018556. Accessed 12 August 2013.
[38]  Fang J, Qian J-J, Yi S, Harding TC, Tu GH, et al. (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23: 584–590 Available: http://www.ncbi.nlm.nih.gov/pubmed/15834?403. Accessed 3 February 2014.
[39]  Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, et al. (2004) Correction of multi-gene deficiency in vivo using a single “self-cleaving” 2A peptide-based retroviral vector. Nat Biotechnol 22: 589–594 Available: http://www.ncbi.nlm.nih.gov/pubmed/15064?769. Accessed 20 January 2014.
[40]  Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14: 189–195 Available: http://www.sciencedirect.com/science/art?icle/pii/S1096717612000055. Accessed 20 January 2014.
[41]  Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3: 141–155 Available: http://www.ncbi.nlm.nih.gov/pubmed/17173?615. Accessed 23 January 2014.
[42]  Ha S-H, Liang YS, Jung H, Ahn M-J, Suh S-C, et al. (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8: 928–938 Available: http://www.ncbi.nlm.nih.gov/pubmed/20649?940. Accessed 4 February 2014.
[43]  Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22: 775–783 Available: http://www.sciencedirect.com/science/art?icle/pii/S0958166911000875. Accessed 20 January 2014.
[44]  Heinig U, Gutensohn M, Dudareva N, Aharoni A (2013) The challenges of cellular compartmentalization in plant metabolic engineering. Curr Opin Biotechnol 24: 239–246 Available: http://www.ncbi.nlm.nih.gov/pubmed/23246?154. Accessed 15 August 2013.
[45]  Sweetlove LJ, Fernie AR (2013) The spatial organization of metabolism within the plant cell. Annu Rev Plant Biol 64: 723–746 Available: http://www.ncbi.nlm.nih.gov/pubmed/23330?793. Accessed 13 August 2013.
[46]  Dumas P, Bergdoll M, Cagnon C, Masson JM (1994) Crystal structure and site-directed mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. EMBO J 13: 2483–2492 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=395119&tool=pmcentrez&?rendertype=abstract. Accessed 4 February 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133