全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Noninvasive Imaging of In Vivo MuRF1 Expression during Muscle Atrophy

DOI: 10.1371/journal.pone.0094032

Full-Text   Cite this paper   Add to My Lib

Abstract:

Numerous human diseases can lead to atrophy of skeletal muscle, and loss of this tissue has been correlated with increased mortality and morbidity rates. Clinically addressing muscle atrophy remains an unmet medical need, and the development of preclinical tools to assist drug discovery and basic research in this effort is important for advancing this goal. In this report, we describe the development of a bioluminescent gene reporter rat, based on the zinc finger nuclease-targeted insertion of a bicistronic luciferase reporter into the 3′ untranslated region of a muscle specific E3 ubiquitin ligase gene, MuRF1 (Trim63). In longitudinal studies, we noninvasively assess atrophy-related expression of this reporter in three distinct models of muscle loss (sciatic denervation, hindlimb unloading and dexamethasone-treatment) and show that these animals are capable of generating refined detail on in vivo MuRF1 expression with high temporal and anatomical resolution.

References

[1]  Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704–1708. doi: 10.1126/science.1065874
[2]  Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, et al. (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18: 39–51. doi: 10.1096/fj.03-0610com
[3]  Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, et al. (2007) Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21: 140–155. doi: 10.1096/fj.06-6604com
[4]  Foletta VC, White LJ, Larsen AE, Leger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461: 325–335. doi: 10.1007/s00424-010-0919-9
[5]  Files DC, D'Alessio FR, Johnston LF, Kesari P, Aggarwal NR, et al. (2012) A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting. Am J Respir Crit Care Med 185: 825–834. doi: 10.1164/rccm.201106-1150oc
[6]  Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, et al. (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185: 1083–1095. doi: 10.1083/jcb.200901052
[7]  Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589: 4759–4776. doi: 10.1113/jphysiol.2011.212845
[8]  Labeit S, Kohl CH, Witt CC, Labeit D, Jung J, et al. (2010) Modulation of muscle atrophy, fatigue and MLC phosphorylation by MuRF1 as indicated by hindlimb suspension studies on MuRF1-KO mice. J Biomed Biotechnol 2010: 693741. doi: 10.1155/2010/693741
[9]  Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, et al. (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6: 376–385. doi: 10.1016/j.cmet.2007.09.009
[10]  Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, et al. (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143: 35–45. doi: 10.1016/j.cell.2010.09.004
[11]  Kelkar M, De A (2012) Bioluminescence based in vivo screening technologies. Curr Opin Pharmacol 12: 592–600. doi: 10.1016/j.coph.2012.07.014
[12]  Prescher JA, Contag CH (2010) Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14: 80–89. doi: 10.1016/j.cbpa.2009.11.001
[13]  Maguire KK, Lim L, Speedy S, Rando TA (2013) Assessment of disease activity in muscular dystrophies by noninvasive imaging. J Clin Invest 123: 2298–2305. doi: 10.1172/jci68458
[14]  O'Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT (2010) Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 220: 317–327. doi: 10.1002/path.2656
[15]  Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11: 636–646. doi: 10.1038/nrg2842
[16]  Cui X, Ji D, Fisher DA, Wu Y, Briner DM, et al. (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29: 64–67. doi: 10.1038/nbt.1731
[17]  Csukly K, Ascah A, Matas J, Gardiner PF, Fontaine E, et al. (2006) Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. J Physiol. 574: 319–327. doi: 10.1113/jphysiol.2006.109702
[18]  Arbogast S, Smith J, Matuszczak Y, Hardin BJ, Moylan JS, et al. (2007) Bowman-Birk inhibitor concentrate prevents atrophy, weakness, and oxidative stress in soleus muscle of hindlimb-unloaded mice. J Appl Physiol 102: 956–964. doi: 10.1152/japplphysiol.00538.2006
[19]  Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, et al. (2008) The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 295: E785–797. doi: 10.1152/ajpendo.00646.2007
[20]  Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC, et al. (2012) A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Physiol Endocrinol Metab 302: E1210–1220. doi: 10.1152/ajpendo.00512.2011
[21]  Macpherson PC, Wang X, Goldman D (2011) Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. J Cell Biochem 112: 2149–2159. doi: 10.1002/jcb.23136
[22]  Tang H, Goldman D (2006) Activity-dependent gene regulation in skeletal muscle is mediated by a histone deacetylase (HDAC)-Dach2-myogenin signal transduction cascade. Proc Natl Acad Sci U S A 103: 16977–16982. doi: 10.1073/pnas.0601565103
[23]  Sandri M, Lin J, Handschin C, Yang W, Arany ZP, et al. (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103: 16260–16265. doi: 10.1073/pnas.0607795103
[24]  Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92: 1367–1377.
[25]  Radek KA, Baer LA, Eckhardt J, DiPietro LA, Wade CE (2008) Mechanical unloading impairs keratinocyte migration and angiogenesis during cutaneous wound healing. J Appl Physiol 104: 1295–1303. doi: 10.1152/japplphysiol.00977.2007
[26]  Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol.
[27]  Grindeland RE, Roy RR, Edgerton VR, Grossman EJ, Mukku VR, et al. (1994) Interactive effects of growth hormone and exercise on muscle mass in suspended rats. Am J Physiol 267: R316–322.
[28]  Desplanches D, Mayet MH, Sempore B, Flandrois R (1987) Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol 63: 558–563.
[29]  Glass D, Roubenoff R (2010) Recent advances in the biology and therapy of muscle wasting. Ann N Y Acad Sci 1211: 25–36. doi: 10.1111/j.1749-6632.2010.05809.x
[30]  Marimuthu K, Murton AJ, Greenhaff PL (2011) Mechanisms regulating muscle mass during disuse atrophy and rehabilitation in humans. J Appl Physiol 110: 555–560. doi: 10.1152/japplphysiol.00962.2010
[31]  Degens H, Alway SE (2006) Control of muscle size during disuse, disease, and aging. Int J Sports Med 27: 94–99. doi: 10.1055/s-2005-837571
[32]  Willis MS, Ike C, Li L, Wang DZ, Glass DJ, et al. (2007) Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100: 456–459. doi: 10.1161/01.res.0000259559.48597.32
[33]  Abbott A (2004) Laboratory animals: the Renaissance rat. Nature 428: 464–466. doi: 10.1038/428464a
[34]  Iannaccone PM, Jacob HJ (2009) Rats! Dis Model Mech. 2: 206–210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133