全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Apical Localisation of Crumbs in the Boundary Cells of the Drosophila Hindgut Is Independent of Its Canonical Interaction Partner Stardust

DOI: 10.1371/journal.pone.0094038

Full-Text   Cite this paper   Add to My Lib

Abstract:

The transmembrane protein Crumbs/Crb is a key regulator of apico-basal epithelial cell polarity, both in Drosophila and in vertebrates. In most cases studied so far, the apical localisation of Drosophila Crumbs depends on the interaction of its C-terminal amino acids with the scaffolding protein Stardust. Consequently, embryos lacking either Crumbs or Stardust develop a very similar phenotype, characterised by the loss of epithelial tissue integrity and cell polarity in many epithelia. An exception is the hindgut, which is not affected by the loss of either gene. The hindgut is a single layered epithelial tube composed of two cell populations, the boundary cells and the principal cells. Here we show that Crumbs localisation in the principal cells depends on Stardust, similarly to other embryonic epithelia. In contrast, localisation of Crumbs in the boundary cells does not require Stardust and is independent of its PDZ domain- and FERM-domain binding motifs. In line with this, the considerable upregulation of Crumbs in boundary cells is not followed by a corresponding upregulation of its canonical binding partners. Our data are the first to suggest a mechanism controlling apical Crumbs localisation, which is independent of its conserved FERM- and PDZ-domain binding motifs.

References

[1]  Apodaca G, Gallo LI, Bryant DM (2012) Role of membrane traffic in the generation of epithelial cell asymmetry. Nat Cell Biol 14: 1235–1243. doi: 10.1038/ncb2635
[2]  Cao X, Surma MA, Simons K (2012) Polarized sorting and trafficking in epithelial cells. Cell Res 22: 793–805. doi: 10.1038/cr.2012.64
[3]  Golachowska MR, Hoekstra D, van ISC (2010) Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol 20: 618–626. doi: 10.1016/j.tcb.2010.08.004
[4]  Weisz OA, Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122: 4253–4266. doi: 10.1242/jcs.032615
[5]  Mellman I, Nelson WJ (2008) Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9: 833–845. doi: 10.1038/nrm2525
[6]  Bulgakova NA, Knust E (2009) The Crumbs complex. J Cell Sci 122: 2587–2596. doi: 10.1242/jcs.023648
[7]  Tepass U (2012) The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 28: 655–685. doi: 10.1146/annurev-cellbio-092910-154033
[8]  Tepass U, Knust E (1990) Phenotypic and developmental analysis of mutations at the crumbs locus, a gene required for the development of epithelia in Drosophila melanogaster. Roux's Arch Dev Biol 199: 189–206. doi: 10.1007/bf01682078
[9]  Tepass U, Knust E (1993) crumbs and stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster. Dev Biol 159: 311–326. doi: 10.1006/dbio.1993.1243
[10]  Grawe F, Wodarz A, Lee B, Knust E, Skaer H (1996) The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122: 951–959.
[11]  Tepass U (1996) Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev Biol 177: 217–225. doi: 10.1006/dbio.1996.0157
[12]  Whiteman EL, Fan S, Harder JL, Walton KD, Liu CJ, et al. (2014) Crumbs3 is Essential for Proper Epithelial Development and Viability. Mol Cell Biol 34: 43–56. doi: 10.1128/mcb.00999-13
[13]  Xiao Z, Patrakka J, Nukui M, Chi L, Niu D, et al. (2011) Deficiency in Crumbs homolog 2 (Crb2) affects gastrulation and results in embryonic lethality in mice. Dev Dyn 240: 2646–2656. doi: 10.1002/dvdy.22778
[14]  Wodarz A, Hinz U, Engelbert M, Knust E (1995) Expression of Crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82: 67–76. doi: 10.1016/0092-8674(95)90053-5
[15]  Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ, et al. (2002) Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416: 143–149. doi: 10.1038/nature721
[16]  Richard M, Muschalik N, Grawe F, ?züyaman S, Knust E (2009) A role for the extracellular domain of Crumbs in morphogenesis of Drosophila photoreceptor cells. Eur J Cell Biol 88: 765–777. doi: 10.1016/j.ejcb.2009.07.006
[17]  Muschalik N, Knust E (2011) Increased levels of the cytoplasmic domain of Crumbs repolarise developing Drosophila photoreceptors. J Cell Sci 124: 3715–3725. doi: 10.1242/jcs.091223
[18]  Blankenship JT, Fuller MT, Zallen JA (2007) The Drosophila homolog of the Exo84 exocyst subunit promotes apical epithelial identity. J Cell Sci 120: 3099–3110. doi: 10.1242/jcs.004770
[19]  Pocha SM, Wassmer T, Niehage C, Hoflack B, Knust E (2011) Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr Biol 21: 1111–1117. doi: 10.1016/j.cub.2011.05.007
[20]  Zhou B, Wu Y, Lin X (2011) Retromer regulates apical–basal polarity through recycling Crumbs. Dev Biol 360: 87–95. doi: 10.1016/j.ydbio.2011.09.009
[21]  Harris KP, Tepass U (2008) Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J Cell Biol 183: 1129–1143. doi: 10.1083/jcb.200807020
[22]  Roeth JF, Sawyer JK, Wilner DA, Peifer M (2009) Rab11 Helps Maintain Apical Crumbs and Adherens Junctions in the Drosophila Embryonic Ectoderm. PLoS ONE 4: e7634. doi: 10.1371/journal.pone.0007634
[23]  Bachmann A, Schneider M, Grawe F, Theilenberg E, Knust E (2001) Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414: 638–643. doi: 10.1038/414638a
[24]  Hong Y, Stronach B, Perrimon N, Jan LY, Jan YN (2001) Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414: 634–638. doi: 10.1038/414634a
[25]  Lengyel JA, Iwaki DD (2002) It takes guts: the Drosophila hindgut as a model system for organogenesis. Dev Biol 243: 1–19. doi: 10.1006/dbio.2002.0577
[26]  Murakami R, Shiotsuki Y (2001) Ultrastructure of the hindgut of Drosophila larvae, with special reference to the domains identified by specific gene expression patterns. J Morph 248: 144–150. doi: 10.1002/jmor.1025
[27]  Fuss B, Hoch M (2002) Notch signaling controls cell fate specification along the dorsoventral axis of the Drosophila gut. Curr Biol 12: 171–179. doi: 10.1016/s0960-9822(02)00653-x
[28]  Tepass U, Theres C, Knust E (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61: 787–799. doi: 10.1016/0092-8674(90)90189-l
[29]  Iwaki DD, Lengyel JA (2002) A Delta-Notch signaling border regulated by Engrailed/Invected repression specifies boundary cells in the Drosophila hindgut. Mech Dev 114: 71–84. doi: 10.1016/s0925-4773(02)00061-8
[30]  Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle of Drosophila melanogaster. II. Zygotic loci on the third chromosome. Roux's Arch Dev Biol 193: 283–295. doi: 10.1007/bf00848157
[31]  Huang J, Zhou W, Dong W, Watson AM, Hong Y (2009) Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci 106: 8284–8289. doi: 10.1073/pnas.0900641106
[32]  Wodarz A, Grawe F, Knust E (1993) Crumbs is involved in the control of apical protein targeting during Drosophila epithelial development. Mech Dev 44: 175–187. doi: 10.1016/0925-4773(93)90066-7
[33]  Klose S, Flores-Benitez D, Riedel F, Knust E (2013) Fosmid-based structure-function analysis reveals functionally distinct domains in the cytoplasmic domain of Drosophila Crumbs. G3 3: 153–165. doi: 10.1534/g3.112.005074
[34]  Han K, Manley JL (1993) Functional domains of the Drosophila Engrailed protein. Embo J 12: 2723–2733.
[35]  Wodarz A, Ramrath A, Kuchinke U, Knust E (1999) Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402: 544–547. doi: 10.1038/990128
[36]  Richard M, Grawe F, Knust E (2006) DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in the Drosophila eye. Dev Dyn 235: 895–907. doi: 10.1002/dvdy.20595
[37]  Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeleton protein Lgl. Nature 422: 326–330. doi: 10.1038/nature01486
[38]  Bachmann A, Timmer M, Sierralta J, Pietrini G, Gundelfinger ED, et al. (2004) Cell type-specific recruitment of Drosophila Lin-7 to distinct MAGUK-based protein complexes defines novel roles for Sdt and Dlg-S97. J Cell Sci 117: 1899–1909. doi: 10.1242/jcs.01029
[39]  Berger S, Bulgakova NA, Grawe F, Johnson K, Knust E (2007) Unravelling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176: 2189–2200. doi: 10.1534/genetics.107.071449
[40]  Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. doi: 10.1038/nmeth.2019
[41]  Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224: 213–232. doi: 10.1111/j.1365-2818.2006.01706.x
[42]  Tepass U, Hartenstein V (1994) The development of cellular junctions in the Drosophila embryo. Dev Biol 161: 563–596. doi: 10.1006/dbio.1994.1054
[43]  Klebes A, Knust E (2000) A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr Biol 10: 76–85. doi: 10.1016/s0960-9822(99)00277-8
[44]  Horne-Badovinac S, Bilder D (2008) Dynein regulates epithelial polarity and the apical localization of stardust A mRNA. PLoS Genet 4: e8. doi: 10.1371/journal.pgen.0040008
[45]  Kuchinke U, Grawe F, Knust E (1998) Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol 8: 1357–1365. doi: 10.1016/s0960-9822(98)00016-5
[46]  Petronczki M, Knoblich JA (2001) DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol 3: 43–49.
[47]  Wodarz A, Ramrath A, Grimm A, Knust E (2000) Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol 150: 1361–1374. doi: 10.1083/jcb.150.6.1361
[48]  Krahn MP, Buckers J, Kastrup L, Wodarz A (2010) Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia. J Cell Biol 190: 751–760. doi: 10.1083/jcb.201006029
[49]  Chen J, Zhang M (2013) The Par3/Par6/aPKC complex and epithelial cell polarity. Exp Cell Res 319: 1357–1364. doi: 10.1016/j.yexcr.2013.03.021
[50]  Kempkens ?, Médina E, Fernandez-Ballester G, ?züyaman S, Le Bivic A, et al. (2006) Computer modelling in combination with in vitro studies reveals similar binding affinities of Drosophila Crumbs for the PDZ domains of Stardust and DmPar-6. Eur J Cell Biol 85: 753–767. doi: 10.1016/j.ejcb.2006.03.003
[51]  Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi M-H, Médina E, et al. (2004) CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 15: 1324–1333. doi: 10.1091/mbc.e03-04-0235
[52]  Bilder D, Schober M, Perrimon N (2003) Integrated activity of PDZ protein complexes regulates epithelial polarity. Nat Cell Biol 5: 53–58. doi: 10.1038/ncb897
[53]  Bilder D, Perrimon N (2000) Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403: 676–680.
[54]  Tanentzapf G, Smith C, McGlade J, Tepass U (2000) Apical, lateral, and basal polarization cues contribute to the development of the follicular epithelium during Drosophila oogenesis. J Cell Biol 151: 891–904. doi: 10.1083/jcb.151.4.891
[55]  Ellenbroek SI, Iden S, Collard JG (2012) Cell polarity proteins and cancer. Semin Cancer Biol 22: 208–215. doi: 10.1016/j.semcancer.2012.02.012
[56]  Elsum I, Yates L, Humbert PO, Richardson HE (2012) The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 53: 141–168. doi: 10.1042/bse0530141
[57]  Wieschaus E, Nüsslein-Volhard C, Jürgens G (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. III. Zygotic loci on the X chromosome and fourth chromosome. Roux's Arch Dev Biol 193: 296–307. doi: 10.1007/bf00848158
[58]  Laprise P, Beronja S, Silva-Gagliardi NF, Pellikka M, Jensen AM, et al. (2006) The FERM protein Yurt is a negative regulatory component of the Crumbs complex that controls epithelial polarity and apical membrane size. Dev Cell 11: 363–374. doi: 10.1016/j.devcel.2006.06.001
[59]  Ling C, Zheng Y, Yin F, Yu J, Huang J, et al. (2010) The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci 107: 10532–10537. doi: 10.1073/pnas.1004279107
[60]  Soplop NH, Cheng Y-S, Kramer SG (2012) Roundabout is Required in the Visceral Mesoderm for Proper Microvillus Length in the Hindgut Epithelium. Dev Dyn 241: 759–769. doi: 10.1002/dvdy.23749
[61]  Bulgakova NA, Kempkens ?, Knust E (2008) Multiple domains of Drosophila Stardust differentially mediate localisation of the Crumbs/Stardust complex during photoreceptor development. J Cell Sci 121: 2018–2026. doi: 10.1242/jcs.031088
[62]  Roh MH, Makarova O, Liu CJ, Shin K, Lee S, et al. (2002) The Maguk protein, Pals1, functions as an adapter linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 157: 161–172. doi: 10.1083/jcb.200109010
[63]  Makarova O, Roh MH, Liu C-J, Laurinec S, Margolis B (2003) Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1). Gene 302: 21–29. doi: 10.1016/s0378111902010843
[64]  Campbell K, Knust E, Skaer H (2009) Crumbs stabilises epithelial polarity during tissue remodelling. J Cell Sci 122: 2604–2612. doi: 10.1242/jcs.047183
[65]  Hamada K, Shimizu T, Yonemura S, Tsukita S, Hakoshima T (2003) Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. Embo J 22: 502–514. doi: 10.1093/emboj/cdg039
[66]  Fan S, Fogg VC, Wang Q, Chen XW, Liu CJ, et al. (2007) A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. J Cell Biol 178: 387–398. doi: 10.1083/jcb.200609096
[67]  Thelin WR, Chen Y, Gentzsch M, Kreda SM, Sallee JL, et al. (2007) Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR. J Clin Invest 117: 364–374. doi: 10.1172/jci30376
[68]  Duan Y, Sun Y, Zhang F, Zhang WK, Wang D, et al. (2012) Keratin K18 increases cystic fibrosis transmembrane conductance regulator (CFTR) surface expression by binding to its C-terminal hydrophobic patch. J Biol Chem 287: 40547–44059. doi: 10.1074/jbc.m112.403584
[69]  Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273: 19797–19801. doi: 10.1074/jbc.273.31.19797
[70]  Swiatecka-Urban A, Duhaime M, Coutermarsh B, Karlson KH, Collawn J, et al. (2002) PDZ domain interaction controls the endocytic recycling of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 277: 40099–40105. doi: 10.1074/jbc.m206964200
[71]  Fletcher GC, Lucas EP, Brain R, Tournier A, Thompson BJ (2012) Positive Feedback and Mutual Antagonism Combine to Polarize Crumbs in the Drosophila Follicle Cell Epithelium. Curr Biol 22: 1–7. doi: 10.1016/j.cub.2012.04.020
[72]  Letizia A, Ricardo S, Moussian B, Martín N, Llimargas M (2013) A functional role of the extracellular domain of Crumbs in cell architecture and apicobasal polarity. J Cell Sci 126: 2157–2163. doi: 10.1242/jcs.122382
[73]  Zou J, Wang X, Wei X (2012) Crb Apical Polarity Proteins Maintain Zebrafish Retinal Cone Mosaics via Intercellular Binding of Their Extracellular Domains. Dev Cell 22: 1261–1274. doi: 10.1016/j.devcel.2012.03.007
[74]  Revenu C, Ubelmann F, Hurbain I, El-Marjou F, Dingli F, et al. (2012) A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins. Mol Biol Cell 23: 324–336. doi: 10.1091/mbc.e11-09-0765
[75]  Walmsley SJ, Freund DM, Curthoys NP (2012) Proteomic profiling of the effect of metabolic acidosis on the apical membrane of the proximal convoluted tubule. Am J Physiol Renal Physiol 302: F1465–1477. doi: 10.1152/ajprenal.00390.2011
[76]  Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581: 1783–1787. doi: 10.1016/j.febslet.2007.03.065
[77]  R?per K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2: 582–592.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133