全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Deep Profiling of the Novel Intermediate-Size Noncoding RNAs in Intraerythrocytic Plasmodium falciparum

DOI: 10.1371/journal.pone.0092946

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intermediate-size noncoding RNAs (is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in Plasmodium falciparum, which is the most virulent malaria parasite infecting human being. By using Illumina/Solexa paired-end sequencing of an is-ncRNA-specific library, we performed a systematic identification of novel is-ncRNAs in intraerythrocytic P. falciparum, strain 3D7. A total of 1,198 novel is-ncRNA candidates, including antisense, intergenic, and intronic is-ncRNAs, were identified. Bioinformatics analyses showed that the intergenic is-ncRNAs were the least conserved among different Plasmodium species, and antisense is-ncRNAs were more conserved than their sense counterparts. Twenty-two novel snoRNAs were identified, and eight potential novel classes of P. falciparum is-ncRNAs were revealed by clustering analysis. The expression of randomly selected novel is-ncRNAs was confirmed by RT-PCR and northern blotting assays. An obvious different expressional profile of the novel is-ncRNA between the early and late intraerythrocytic developmental stages of the parasite was observed. The expression levels of the antisense RNAs correlated with those of their cis-encoded sense RNA counterparts, suggesting that these is-ncRNAs are involved in the regulation of gene expression of the parasite. In conclusion, we accomplished a deep profiling analysis of novel is-ncRNAs in P. falciparum, analysed the conservation and structural features of these novel is-ncRNAs, and revealed their differential expression patterns during the development of the parasite. These findings provide important information for further functional characterisation of novel is-ncRNAs during the development of P. falciparum.

References

[1]  Goodrich JA, Kugel JF (2009) From bacteria to humans, chromatin to elongation, and activation to repression: The expanding roles of noncoding RNAs in regulating transcription. Crit Rev Biochem Mol Biol 44: 3–15. doi: 10.1080/10409230802593995
[2]  Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5: 316–323. doi: 10.1038/nrg1321
[3]  Lee C, Kikyo N (2012) Strategies to identify long noncoding RNAs involved in gene regulation. Cell Biosci 2: 37. doi: 10.1186/2045-3701-2-37
[4]  Brosnan CA, Voinnet O (2009) The long and the short of noncoding RNAs. Curr Opin Cell Biol 21: 416–425. doi: 10.1016/j.ceb.2009.04.001
[5]  Ruby JG, Jan C, Player C, Axtell MJ, Lee W, et al. (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127: 1193–1207. doi: 10.1016/j.cell.2006.10.040
[6]  Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442: 199–202. doi: 10.1038/nature04917
[7]  Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145: 178–181. doi: 10.1016/j.cell.2011.03.014
[8]  Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43: 904–914. doi: 10.1016/j.molcel.2011.08.018
[9]  Wang Y, Chen J, Wei G, He H, Zhu X, et al. (2011) The Caenorhabditis elegans intermediate-size transcriptome shows high degree of stage-specific expression. Nucleic Acids Res 39: 5203–5214. doi: 10.1093/nar/gkr102
[10]  Xiao T, Wang Y, Luo H, Liu L, Wei G, et al. (2012) A differential sequencing-based analysis of the C. elegans noncoding transcriptome. RNA 18: 626–639. doi: 10.1261/rna.030965.111
[11]  Li A, Wei G, Wang Y, Zhou Y, Zhang XE, et al. (2012) Identification of intermediate-size non-coding RNAs involved in the UV-induced DNA damage response in C. elegans. PLoS One 7: e48066. doi: 10.1371/journal.pone.0048066
[12]  Zhang Y, Wang J, Huang S, Zhu X, Liu J, et al. (2009) Systematic identification and characterization of chicken (Gallus gallus) ncRNAs. Nucleic Acids Res 37: 6562–6574. doi: 10.1093/nar/gkp704
[13]  Zhang Y, Liu J, Jia C, Li T, Wu R, et al. (2010) Systematic identification and evolutionary features of rhesus monkey small nucleolar RNAs. BMC Genomics 11: 61. doi: 10.1186/1471-2164-11-61
[14]  Li D, Wang Y, Zhang K, Jiao Z, Zhu X, et al. (2011) Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Nucleic Acids Res 39: 3792–3805. doi: 10.1093/nar/gkq1317
[15]  Yan D, He D, He S, Chen X, Fan Z, et al. (2011) Identification and analysis of intermediate size noncoding RNAs in the human fetal brain. PLoS One 6: e21652. doi: 10.1371/journal.pone.0021652
[16]  Mu J, Seydel KB, Bates A, Su XZ (2010) Recent Progress in Functional Genomic Research in Plasmodium falciparum. Curr Genomics 11: 279–286. doi: 10.2174/138920210791233081
[17]  Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511. doi: 10.1038/nature01097
[18]  Kolev NG, Tschudi C, Ullu E (2011) RNA interference in protozoan parasites: achievements and challenges. Eukaryot Cell 10: 1156–1163. doi: 10.1128/ec.05114-11
[19]  Rathjen T, Nicol C, McConkey G, Dalmay T (2006) Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett 580: 5185–5188. doi: 10.1016/j.febslet.2006.08.063
[20]  Xue X, Zhang Q, Huang Y, Feng L, Pan W (2008) No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection. Malar J 7: 47. doi: 10.1186/1475-2875-7-47
[21]  Ullu E, Tschudi C, Chakraborty T (2004) RNA interference in protozoan parasites. Cell Microbiol 6: 509–519. doi: 10.1111/j.1462-5822.2004.00399.x
[22]  Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, et al. (2009) Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res 37: 3788–3798. doi: 10.1093/nar/gkp239
[23]  Raabe CA, Sanchez CP, Randau G, Robeck T, Skryabin BV, et al. (2009) A global view of the nonprotein-coding transcriptome in Plasmodium falciparum. Nucleic Acids Res 38: 608–617. doi: 10.1093/nar/gkp895
[24]  Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, et al. (2011) A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol 12: R56. doi: 10.1186/gb-2011-12-6-r56
[25]  Chakrabarti K, Pearson M, Grate L, Sterne-Weiler T, Deans J, et al. (2007) Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA 13: 1923–1939. doi: 10.1261/rna.751807
[26]  Mourier T, Carret C, Kyes S, Christodoulou Z, Gardner PP, et al. (2008) Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum. Genome Res 18: 281–292. doi: 10.1101/gr.6836108
[27]  Mishra PC, Kumar A, Sharma A (2009) Analysis of small nucleolar RNAs reveals unique genetic features in malaria parasites. BMC Genomics 10: 68. doi: 10.1186/1471-2164-10-68
[28]  Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11 17. doi: 10.1002/0471250953.bi1107s32
[29]  Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, et al. (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76: 12–24. doi: 10.1111/j.1365-2958.2009.07026.x
[30]  Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050. doi: 10.1101/gr.3715005
[31]  Schattner P, Decatur WA, Davis CA, Ares M Jr, Fournier MJ, et al. (2004) Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 32: 4281–4296. doi: 10.1093/nar/gkh768
[32]  Hertel J, Hofacker IL, Stadler PF (2008) SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 24: 158–164. doi: 10.1093/bioinformatics/btm464
[33]  Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, et al. (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39: D141–145. doi: 10.1093/nar/gkq1129
[34]  Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 22: 1–5. doi: 10.1016/j.tig.2005.10.003
[35]  Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF (2005) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23: 1383–1390. doi: 10.1038/nbt1144
[36]  Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3: e65. doi: 10.1371/journal.pcbi.0030065
[37]  Ozsolak F, Milos PM (2010) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12: 87–98. doi: 10.1038/nrg2934
[38]  Gilmore SJ (2012) High throughput investigative dermatology in 2012 and beyond: A new era beckons. Australas J Dermatol 54: 1–8. doi: 10.1111/j.1440-0960.2012.00883.x
[39]  Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27: 522–530. doi: 10.1016/j.tibtech.2009.05.006
[40]  Consortium CeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018. doi: 10.1126/science.282.5396.2012
[41]  Agarwal A, Koppstein D, Rozowsky J, Sboner A, Habegger L, et al. (2010) Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays. BMC Genomics 11: 383. doi: 10.1186/1471-2164-11-383
[42]  Frazer KA, Sheehan JB, Stokowski RP, Chen X, Hosseini R, et al. (2001) Evolutionarily conserved sequences on human chromosome 21. Genome Res 11: 1651–1659. doi: 10.1101/gr.198201
[43]  Silva JC, Egan A, Friedman R, Munro JB, Carlton JM, et al. Genome sequences reveal divergence times of malaria parasite lineages. Parasitology 138: 1737–1749. doi: 10.1017/s0031182010001575
[44]  Arisue N, Kawai S, Hirai M, Palacpac NM, Jia M, et al. (2011) Clues to evolution of the SERA multigene family in 18 Plasmodium species. PLoS One 6: e17775. doi: 10.1371/journal.pone.0017775
[45]  Spielmann T, Hawthorne PL, Dixon MW, Hannemann M, Klotz K, et al. (2006) A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol Biol Cell 17: 3613–3624. doi: 10.1091/mbc.e06-04-0291
[46]  Gunasekera AM, Patankar S, Schug J, Eisen G, Kissinger J, et al. (2004) Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. Mol Biochem Parasitol 136: 35–42. doi: 10.1016/j.molbiopara.2004.02.007
[47]  Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, et al. (2005) The transcriptome of Toxoplasma gondii. BMC Biol 3: 26. doi: 10.1186/1741-7007-3-26
[48]  Sims JS, Militello KT, Sims PA, Patel VP, Kasper JM, et al. (2009) Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. Eukaryot Cell 8: 327–338. doi: 10.1128/ec.00340-08
[49]  Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, et al. (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22: 756–769. doi: 10.1101/gad.455708
[50]  Hastings ML, Ingle HA, Lazar MA, Munroe SH (2000) Post-transcriptional regulation of thyroid hormone receptor expression by cis-acting sequences and a naturally occurring antisense RNA. J Biol Chem 275: 11507–11513. doi: 10.1074/jbc.275.15.11507
[51]  Rougeulle C, Heard E (2002) Antisense RNA in imprinting: spreading silence through Air. Trends Genet 18: 434–437. doi: 10.1016/s0168-9525(02)02749-x
[52]  Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, et al. (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491: 454–457. doi: 10.1038/nature11508
[53]  Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193: 673–675. doi: 10.1126/science.781840
[54]  Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65: 418–420. doi: 10.2307/3280287
[55]  Spadafora C, Gerena L, Kopydlowski KM (2011) Comparison of the in vitro invasive capabilities of Plasmodium falciparum schizonts isolated by Percoll gradient or using magnetic based separation. Malar J 10: 96. doi: 10.1186/1475-2875-10-96
[56]  Radfar A, Mendez D, Moneriz C, Linares M, Marin-Garcia P, et al. (2009) Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat Protoc 4: 1899–1915. doi: 10.1038/nprot.2009.198
[57]  Deng W, Zhu X, Skogerbo G, Zhao Y, Fu Z, et al. (2006) Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression. Genome Res 16: 20–29. doi: 10.1101/gr.4139206
[58]  Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25: 2730–2731. doi: 10.1093/bioinformatics/btp472
[59]  Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39: W475–478. doi: 10.1093/nar/gkr201
[60]  Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–208. doi: 10.1093/nar/gkp335

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133