[1] | McNeill WH (1995) Keeping together in time: Dance and drill in human history. Cambridge: Harvard University Press.
|
[2] | Dissanayake E (2000) Antecedents of the temporal arts in early mother-infant interaction. In: Wallin NL, Merker B & Brown S (eds.): The Origins of Music. Cambridge: The MIT Press.
|
[3] | Balter M (2004) Seeking the key to music. Science 306(5699): 1120–1122. doi: 10.1126/science.306.5699.1120
|
[4] | Kokotsaki D, Hallam S (2007) Higher education music students’ perceptions of the benefits of participative music making. Music Education Research 9(1): 93–109. doi: 10.1080/14613800601127577
|
[5] | Keller PE, Knoblich G, Repp BH (2007) Pianists duet better when they play with themselves: On the possible role of action simulation in synchronization. Consciousness and Cognition 16(1): 102–111. doi: 10.1016/j.concog.2005.12.004
|
[6] | Leman M (2008) Embodied Music Cognition and Mediation Technology. Cambridge: The MIT Press.
|
[7] | Camurri A, Varni G, Volpe G (2009) Measuring entrainment in small groups of musicians. ACII 2009, 3rd International Conference on Affective Computing and Intelligent Interaction. 364: 2369–2380. doi: 10.1109/acii.2009.5349471
|
[8] | Goodale MA (1998) Visuomotor control: where does vision end and action begin? Current Biology 8(14), R489-R491.
|
[9] | Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cerebral Cortex 5(5): 429–438. doi: 10.1093/cercor/5.5.429
|
[10] | Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm region. Cerebral Cortex 6(2): 102–119. doi: 10.1093/cercor/6.2.102
|
[11] | Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annual Review of Neuroscience 20(1): 25–42. doi: 10.1146/annurev.neuro.20.1.25
|
[12] | Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, et al. (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. European Journal of Neuroscience 11(9): 3276–3286. doi: 10.1046/j.1460-9568.1999.00753.x
|
[13] | de Jong BM, van der Graaf FH, Paans AMJ (2001) Brain activation related to the representations of external space and body scheme in visuomotor control. Neuroimage 14(5): 1128–1135. doi: 10.1006/nimg.2001.0911
|
[14] | di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Experimental Brain Research 91(1): 176–180. doi: 10.1007/bf00230027
|
[15] | Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(2): 593–609. doi: 10.1093/brain/119.2.593
|
[16] | Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, et al. (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience 13(3): 400–404. doi: 10.1111/j.1460-9568.2001.01385.x
|
[17] | Lewis JW, Brefczynski JA, Phinney RE, Janik JJ, DeYoe EA (2005) Distinct cortical pathways for processing tool versus animal sounds. The Journal of Neuroscience 25(21): 5148–5158. doi: 10.1523/jneurosci.0419-05.2005
|
[18] | Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M, et al. (2005) Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience 17(2): 273–281. doi: 10.1162/0898929053124965
|
[19] | Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences 4(11): 423–431. doi: 10.1016/s1364-6613(00)01537-0
|
[20] | Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences 11(5): 211–218. doi: 10.1016/j.tics.2007.02.006
|
[21] | Poulet JF, Hedwig B (2007) New insights into corollary discharges mediated by identified neural pathways. Trends in Neurosciences 30(1): 14–21. doi: 10.1016/j.tins.2006.11.005
|
[22] | Beudel M, Renken R, Leenders KL, de Jong BM (2009) Cerebral representations of space and time. Neuroimage 44(30): 1032–1040. doi: 10.1016/j.neuroimage.2008.09.028
|
[23] | Franklin DW, Wolpert DM (2011) Computational mechanisms of sensorimotor control. Neuron 72(3): 425–442. doi: 10.1016/j.neuron.2011.10.006
|
[24] | Beudel M, Zijlstra S, Mulder T, Zijdewind I, de Jong BM (2011) Secondary sensory area SII is crucially involved in the preparation of familiar movements compared to movements never made before. Human Brain Mapping 32(4): 564–579. doi: 10.1002/hbm.21044
|
[25] | Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annual Review of Neuroscience 27: 169–192. doi: 10.1146/annurev.neuro.27.070203.144230
|
[26] | Kilner JM, Friston KJ, Frith CD (2007) Predictive coding: an account of the mirror neuron system. Cognitive Processing 8(3): 159–166. doi: 10.1007/s10339-007-0170-2
|
[27] | Iacoboni M (2009) Imitation, empathy, and mirror neurons. Annual Review of Psychology 60: 653–670. doi: 10.1146/annurev.psych.60.110707.163604
|
[28] | Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social perception. Nature Reviews Neuroscience 11: 417–428. doi: 10.1038/nrn2833
|
[29] | Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nature Reviews Neuroscience 8: 547–558. doi: 10.1038/nrn2152
|
[30] | Schubotz RI, Friederici AD, von Cramon DY (2000) Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage 11(1): 1–12. doi: 10.1006/nimg.1999.0514
|
[31] | Parsons LM (2001) Exploring the functional neuroanatomy of music performance, perception, and comprehension. Annals of the New York Academy of Sciences 930(1): 211–231. doi: 10.1111/j.1749-6632.2001.tb05735.x
|
[32] | Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nature Neuroscience 6(7): 682–687. doi: 10.1038/nn1081
|
[33] | Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phrases of paced finger tapping. Neuropsychologia 42(10): 1301–1312. doi: 10.1016/j.neuropsychologia.2004.03.001
|
[34] | Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience 19(5): 893–906. doi: 10.1162/jocn.2007.19.5.893
|
[35] | Bengtsson AL, Ullén F, Ehrsson HH, Hashimoto T, Kito T, et al. (2009) Listening to rhythms activates motor and premotor cortices. Cortex 45(1): 62–71. doi: 10.1016/j.cortex.2008.07.002
|
[36] | Chen JL, Penhune VB, Zatorre RJ (2008) Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexit and musical training. Journal of Cognitive Neuroscience 20(2): 226–239. doi: 10.1162/jocn.2008.20.2.226
|
[37] | Kornysheva K, von Cramon DY, Jacobsen T, Schubotz RI (2010) Tuning-in to the beat: Aesthetic appreciation of musical rhythms correlates with a premotor activity boost. Human Brain Mapping 31(1): 48–64. doi: 10.1002/hbm.20844
|
[38] | Sergent J, Zuck E, Terriah S, MacDonald B (1992) Distributed neural network underlying musical sight-reading and keyboard performance. Science 257(5066): 106–109. doi: 10.1126/science.1621084
|
[39] | Haueisen J, Kn?sche TR (2001) Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience 13(6): 786–792. doi: 10.1162/08989290152541449
|
[40] | Lotze M, Scheler G, Tan HR, Braun C, Birbaumer N (2003) The musician’s brain: Functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20(3): 1817–1829. doi: 10.1016/j.neuroimage.2003.07.018
|
[41] | Stewart L, Henson R, Kampe K, Walsh V, Turner R, et al. (2003) Brain changes after learning to read and play music. Neuroimage 20(1): 71–83. doi: 10.1016/s1053-8119(03)00248-9
|
[42] | Meister IG, Krings T, Foltys H, Boroojerdi B, Müller M, et al. (2004) Playing piano in the mind–an fMRI study on music imagery and performance in pianists. Cognitive Brain Research 19(3): 219–228. doi: 10.1016/j.cogbrainres.2003.12.005
|
[43] | Haslinger B, Erhard P, Altenmüller E, Schroeder U, Boecker H, et al. (2005) Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience 17(2): 282–293. doi: 10.1162/0898929053124893
|
[44] | Bangert M, Peschel T, Schlaug G, Rotte M, Drescher D, et al. (2006) Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30(3): 917–26. doi: 10.1016/j.neuroimage.2005.10.044
|
[45] | Patel AD (2003) Language, music, syntax and the brain. Nature Neuroscience 6(7): 674–681. doi: 10.1038/nn1082
|
[46] | Patel AD (2005) The relationship of music to the melody of speech and to syntactic processing disorders in aphasia. Annals of the New York Academy of Sciences 1060(1): 59–70. doi: 10.1196/annals.1360.005
|
[47] | Brown S, Martinez MJ, Parsons LM (2006) Music and language side by side in the brain: a PET study of the generation of melodies and sentences. European Journal of Neuroscience 23(10): 2791–2803. doi: 10.1111/j.1460-9568.2006.04785.x
|
[48] | Tervaniemi M (2003) Musical sound processing: EEG and MEG evidence. In: Peretz I and Zatorre R. (eds.) Cognitive Neuroscience of Music. Oxford: Oxford University Press.
|
[49] | Pressing J (2005) Improvisation: methods and models. In: Sloboda JA (ed.): Generative Processes in Music. Oxford: Clarendon Press.
|
[50] | Baumgart F, Kaulisch T, Tempelmann C, Gaschler-Merkefski B, Tegeler C, et al. (1998) Electrodynamic headphones and woofers for application in magnetic resonance imaging scanners. Medical Physics 25(10): 2068–2070. doi: 10.1118/1.598368
|
[51] | Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, et al. (1995) Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 2(4): 189–210. doi: 10.1002/hbm.460020402
|
[52] | Gazzola V, Aziz-Zadeh L, Keysers C (2006) Empathy and the somatotopic auditory mirror system in humans. Current Biology 16(18): 1824–1829. doi: 10.1016/j.cub.2006.07.072
|
[53] | Osnes B, Hugdahl K, Hjelmervik H, Specht K (2011) Increased activation in superior temporal gyri as a function of increment in phonetic features. Brain and Language 116(2): 97–101. doi: 10.1016/j.bandl.2010.10.001
|
[54] | Angula-Perkins A, Aube W, Peretz I, Barrios F, Armony J, et al.. (2011) Music-specific responses within the temporal lobe. 17th Annual Meeting Organization Human Brain Mapping, Abstract 432mo.
|
[55] | Warren JD, Uppenkamp S, Patterson RD, Griffiths TD (2003) Separating pitch chroma and pitch height in the human brain. Proceedings of the National Academy of Sciences 100(17): 10038–10042. doi: 10.1073/pnas.1730682100
|
[56] | Griffiths TD, Warren JD (2002) The planum temporale as a computational hub. Trends in Neurosciences. 25(7): 348–353. doi: 10.1016/s0166-2236(02)02191-4
|
[57] | Nan Y, Kn?sche TR, Friederici AD (2006) The perception of musical phrase structure: a cross-cultural ERP study. Brain Research 1094(1): 179–191. doi: 10.1016/j.brainres.2006.03.115
|
[58] | Dick F, Lee HL, Nusbaum H, Price CJ (2011) Auditory-motor expertise alters “speech selectivity” in professional musicians and actors. Cerebral Cortex 21(4): 938–948. doi: 10.1093/cercor/bhq166
|
[59] | Schachner A (2010) Auditory-motor entrainment in vocal mimicking species: additional ontogenetic and phylogenetic factors. Communicative & Integrative Biology 3(3): 290–293. doi: 10.4161/cib.3.3.11708
|
[60] | Trainor LJ, McDonald KL, Alain C (2002) Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. Journal of Cognitive Neuroscience 14(3): 430–442. doi: 10.1162/089892902317361949
|
[61] | Gibson JJ (1977) The theory of affordances. In Shaw RE and Bransford J (eds): Perceiving, acting and knowing: Toward an ecological psychology. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
|
[62] | Langheim FJP, Callicott JH, Mattay VS, Duyn JH, Weinberger DR (2002) Cortical systems associated with covert music rehearsal. Neuroimage 16(4): 901–908. doi: 10.1006/nimg.2002.1144
|
[63] | Gieteling EW, van Rijn MA, de Jong BM, Hoogduin JM, Renken R, et al. (2009) Cerebral activation during motor imagery in complex regional pain syndrome type 1 with dystonia. Pain 134(3): 302–309. doi: 10.1016/j.pain.2007.04.029
|
[64] | Lahav A, Saltzman E, Schlaug G (2007) Action representation of sound: audiomotor recognition network while listening to newly acquired actions. The Journal of Neuroscience 27(2): 308–314. doi: 10.1523/jneurosci.4822-06.2007
|
[65] | Bangert M, Altenmüller EO (2003) Mapping perception to action in piano practice: a longitudinal DC-EEG study. BioMed Central Neuroscience 4: 26.
|
[66] | D’Ausilio A, Altenmüller E, Olivetti Belardinelli M, Lotze M (2006) Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience 24(3): 955–958. doi: 10.1111/j.1460-9568.2006.04960.x
|
[67] | Georgopoulos AP (1991) Higher order motor control. Annual Review of Neuroscience 14(1): 361–377. doi: 10.1146/annurev.neuro.14.1.361
|
[68] | Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience 20(1): 303–330. doi: 10.1146/annurev.neuro.20.1.303
|
[69] | Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy 207(1): 3–17. doi: 10.1111/j.1469-7580.2005.00426.x
|
[70] | de Jong BM, Frackowiak RSJ, Willemsen ATM, Paans AMJ (1999) The distribution of cerebral activity related to visuomotor coordination indicating perceptual and executional specialization. Cognitive Brain Research 8(1): 45–59. doi: 10.1016/s0926-6410(99)00005-1
|
[71] | Harris IM, Egan GF, Sonkkila C, Tochon-Danguy HJ, Paxinos G, et al. (2000) Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain 123(1): 65–73. doi: 10.1093/brain/123.1.65
|
[72] | Vesia M, Monteon JA, Sergio LE, Crawford JD (2006) Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex. Journal of Neurophysiology 96(6): 3016–3027. doi: 10.1152/jn.00411.2006
|
[73] | Rusconi E, Kwan B, Giordano B, Umiltà C, Butterworth B (2005) The mental space of pitch height. Annals of the New York Academy of Sciences. 1060(1): 195–197. doi: 10.1196/annals.1360.056
|
[74] | Cupchik GC, Phillips K, Hill DS (2001) Shared processes in spatial rotation and musical permutation. Brain and Cognition 46(3): 373–382. doi: 10.1006/brcg.2001.1295
|
[75] | Rauscher FH, Shaw GL, Ky KN (1995) Listening to Mozart enhances spatial-temporal reasoning: towards a neurophysiological basis. Neuroscience Letters 185(1): 44–47. doi: 10.1016/0304-3940(94)11221-4
|
[76] | Sluming V, Brooks J, Howard M, Downes JJ, Roberts N (2007) Broca’s area supports enhanced visuospatial cognition in orchestral musicians. The Journal of Neuroscience 27(14): 3799–3806. doi: 10.1523/jneurosci.0147-07.2007
|
[77] | Foster NE, Zatorre RJ (2010) A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex 20(6): 1350–1359. doi: 10.1093/cercor/bhp199
|
[78] | Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, et al. (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cerebral Cortex 15(6): 854–869. doi: 10.1093/cercor/bhh186
|
[79] | Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, et al. (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(3): 630–653. doi: 10.1093/brain/awl359
|
[80] | Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2005) Automatic encoding of polyphonic melodies in musicians and nonmusicians. Journal of Cognitive Neuroscience 17(10): 1578–1592. doi: 10.1162/089892905774597263
|
[81] | Satoh M, Takeda K, Nagata K, Hatazawa J, Kuzuhara S (2001) Activated brain regions in musicians during an ensemble: A PET study. Cognitive Brain Research 12(1): 101–108. doi: 10.1016/s0926-6410(01)00044-1
|
[82] | Janata P, Birk JL, van Horn JD, Leman M, Tillman B, et al. (2002) The cortical topography of tonal structures underlying Western music. Science 298(5601): 2167–2170. doi: 10.1126/science.1076262
|
[83] | Koelsch S (2011) Toward a neural basis of music perception - a review and updated model. Frontiers in Psychology 2: 110. doi: 10.3389/fpsyg.2011.00110
|
[84] | Sammler D, Koelsch S, Friederici AD (2011) Are left fronto-temporal brain areas a prerequisite for normal music-syntactic processing? Cortex 47(6): 659–673. doi: 10.1016/j.cortex.2010.04.007
|
[85] | James CE, Britz J, Vuilleumier P, Hauert CA, Michel CM (2008) Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. Neuroimage 42(4): 1597–1608. doi: 10.1016/j.neuroimage.2008.06.025
|
[86] | Koelsch S (2005) Neural substrates of processing syntax and semantics in music. Current Opinion in Neurobiology 15(1): 1–6. doi: 10.1016/j.conb.2005.03.005
|
[87] | Koelsch S (2006) Significance of Broca’s area and ventral premotor cortex for music-syntactic processing. Cortex 42(4): 518–520. doi: 10.1016/s0010-9452(08)70390-3
|
[88] | J?ncke L, Kleinschmidt A, Mirzazade S, Shah NJ, Freund HJ (2001) The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cerebral Cortex 11(2): 114–21. doi: 10.1093/cercor/11.2.114
|
[89] | Itoh K, Fujii Y, Suzuki K, Nakada T (2001) Asymmetry of parietal lobe activation during piano performance: a high field functional magnetic resonance imaging study. Neuroscience Letters 309(1): 41–44. doi: 10.1016/s0304-3940(01)02024-9
|