[1] | Einstein A (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Ann Physik 17: 549–560.
|
[2] | Kubo R (1966) The fluctuation-dissipation theorem. Rep Prog Phys 29: 255–284. doi: 10.1088/0034-4885/29/1/306
|
[3] | Marini Bettolo Marconi U, Puglisi A, Rondoni L, Vulpiani A (2008) Fluctuation-dissipation: Response theory in statistical physics. Phys Rep 461: 111–195. doi: 10.1016/j.physrep.2008.02.002
|
[4] | Seifert U (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys 75: 126001. doi: 10.1088/0034-4885/75/12/126001
|
[5] | Berthier L, Biroli G (2011) Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys 83: 587–645. doi: 10.1103/revmodphys.83.587
|
[6] | Cugliandolo L (2011) The effective temperature. J Phys A: Math Theor 44: 483001–483041. doi: 10.1088/1751-8113/44/48/483001
|
[7] | Crisanti A, Ritort F (2003) Violation of the fluctuation dissipation theorem in glassy systems: basic notions and the numerical evidence. J Phys A: Math Gen 36: R181–R290. doi: 10.1088/0305-4470/36/21/201
|
[8] | Wang P, Song C, Makse HA (2006) Dynamic particle tracking reveals the ageing temperature of a colloidal glass. Nature Physics 2: 526–531. doi: 10.1038/nphys366
|
[9] | Joubaud S, Percier B, Petrosyan A, Ciliberto S (2009) Aging and Effective Temperatures Near a Critical Point. Phys Rev Lett 102: 130601. doi: 10.1103/physrevlett.102.130601
|
[10] | Makse HA, Kurchan J (2002) Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415: 614–617. doi: 10.1038/415614a
|
[11] | Ono IK, OHern CS, Durian DJ, Langer SA, Liu AJ, et al. (2002) Effective Temperatures of a Driven System Near Jamming. Phys Rev Lett 89: 095703. doi: 10.1103/physrevlett.89.095703
|
[12] | Vicsek T, Zafeiris A (2012) Collective motion. Physics Reports 517: 71–140. doi: 10.1016/j.physrep.2012.03.004
|
[13] | Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, et al. (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85: 1143–1189. doi: 10.1103/revmodphys.85.1143
|
[14] | Loi D, Mossa S, Cugliandolo L (2008) Effective temperature of active matter. Phys Rev E 77: 051111. doi: 10.1103/physreve.77.051111
|
[15] | Berthier L, Kurchan J (2013) Non-equilibrium glass transitions in driven and active matter. Nature Physics 9: 310–314. doi: 10.1038/nphys2592
|
[16] | Bialké J, Speck T, L?wen H (2012) Crystallization in a Dense Suspension of Self-Propelled Particles. Phys Rev Lett 108: 168301. doi: 10.1103/physrevlett.108.168301
|
[17] | Fily Y, Marchetti MC (2012) Athermal Phase Separation of Self-Propelled Particles with No Alignment. Phys Rev Lett 108: 235702. doi: 10.1103/physrevlett.108.235702
|
[18] | Lippiello E, Corberi F, Zannetti M (2005) Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Phys Rev E 71: 036104. doi: 10.1103/physreve.71.036104
|
[19] | Baiesi M, Maes C, Wynants B (2009) Fluctuations and response of nonequilibrium states. Phys Rev Lett 103: 010602. doi: 10.1103/physrevlett.103.010602
|
[20] | Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68: 1259–1273. doi: 10.1103/revmodphys.68.1259
|
[21] | D’Anna G, Mayor P, Barrat A, Loreto V, Nori F (2003) Observing brownian motion in vibration-fluidized granular matter. Nature 424: 909–912. doi: 10.1038/nature01867
|
[22] | Gnoli A, Petri A, Dalton F, Pontuale G, Gradenigo G, et al. (2013) Brownian Ratchet in a Thermal Bath Driven by Coulomb Friction. Phys Rev Lett 110: 120601. doi: 10.1103/physrevlett.110.120601
|
[23] | Sarracino A, Villamaina D, Costantini G, Puglisi A (2010) Granular Brownian motion. J Stat Mech P04013.
|
[24] | Hayakawa H (2005) Langevin equation with Coulomb friction. Physica D 205: 48–56. doi: 10.1016/j.physd.2004.12.011
|
[25] | Puglisi A, Baldassarri A, Vulpiani A (2007) Violation of the Einstein relation in Granular Fluids: the role of correlations. J Stat Mech P08016.
|
[26] | Orpe AV, Kudrolli A (2007) Velocity correlations in dense granular flows observed with internal imaging. Phys Rev Lett 98: 238001. doi: 10.1103/physrevlett.98.238001
|
[27] | Fiege A, Aspelmeier T, Zippelius A (2009) Long-time tails and cage effect indriven granular fluids. Phys Rev Lett 102: 098001. doi: 10.1103/physrevlett.102.098001
|
[28] | Sarracino A, Villamaina D, Gradenigo G, Puglisi A (2010) Irreversible dynamics of a massive intruder in dense granular fluids. Europhys. Lett. 92: 34001. doi: 10.1209/0295-5075/92/34001
|
[29] | Villamaina D, Baldassarri A, Puglisi A, Vulpiani A (2009) The fluctuation-dissipation relation: how does one compare correlation functions and responses?. J. Stat. Mech. P07024.
|
[30] | Keys AS, Abate AR, Glotzer SC, Durian DC (2007) Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nature Physics 3: 260–264. doi: 10.1038/nphys572
|