全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Nonequilibrium Brownian Motion beyond the Effective Temperature

DOI: 10.1371/journal.pone.0093720

Full-Text   Cite this paper   Add to My Lib

Abstract:

The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein’s relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own “effective” temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein’s relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.

References

[1]  Einstein A (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Ann Physik 17: 549–560.
[2]  Kubo R (1966) The fluctuation-dissipation theorem. Rep Prog Phys 29: 255–284. doi: 10.1088/0034-4885/29/1/306
[3]  Marini Bettolo Marconi U, Puglisi A, Rondoni L, Vulpiani A (2008) Fluctuation-dissipation: Response theory in statistical physics. Phys Rep 461: 111–195. doi: 10.1016/j.physrep.2008.02.002
[4]  Seifert U (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys 75: 126001. doi: 10.1088/0034-4885/75/12/126001
[5]  Berthier L, Biroli G (2011) Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys 83: 587–645. doi: 10.1103/revmodphys.83.587
[6]  Cugliandolo L (2011) The effective temperature. J Phys A: Math Theor 44: 483001–483041. doi: 10.1088/1751-8113/44/48/483001
[7]  Crisanti A, Ritort F (2003) Violation of the fluctuation dissipation theorem in glassy systems: basic notions and the numerical evidence. J Phys A: Math Gen 36: R181–R290. doi: 10.1088/0305-4470/36/21/201
[8]  Wang P, Song C, Makse HA (2006) Dynamic particle tracking reveals the ageing temperature of a colloidal glass. Nature Physics 2: 526–531. doi: 10.1038/nphys366
[9]  Joubaud S, Percier B, Petrosyan A, Ciliberto S (2009) Aging and Effective Temperatures Near a Critical Point. Phys Rev Lett 102: 130601. doi: 10.1103/physrevlett.102.130601
[10]  Makse HA, Kurchan J (2002) Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415: 614–617. doi: 10.1038/415614a
[11]  Ono IK, OHern CS, Durian DJ, Langer SA, Liu AJ, et al. (2002) Effective Temperatures of a Driven System Near Jamming. Phys Rev Lett 89: 095703. doi: 10.1103/physrevlett.89.095703
[12]  Vicsek T, Zafeiris A (2012) Collective motion. Physics Reports 517: 71–140. doi: 10.1016/j.physrep.2012.03.004
[13]  Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, et al. (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85: 1143–1189. doi: 10.1103/revmodphys.85.1143
[14]  Loi D, Mossa S, Cugliandolo L (2008) Effective temperature of active matter. Phys Rev E 77: 051111. doi: 10.1103/physreve.77.051111
[15]  Berthier L, Kurchan J (2013) Non-equilibrium glass transitions in driven and active matter. Nature Physics 9: 310–314. doi: 10.1038/nphys2592
[16]  Bialké J, Speck T, L?wen H (2012) Crystallization in a Dense Suspension of Self-Propelled Particles. Phys Rev Lett 108: 168301. doi: 10.1103/physrevlett.108.168301
[17]  Fily Y, Marchetti MC (2012) Athermal Phase Separation of Self-Propelled Particles with No Alignment. Phys Rev Lett 108: 235702. doi: 10.1103/physrevlett.108.235702
[18]  Lippiello E, Corberi F, Zannetti M (2005) Off-equilibrium generalization of the fluctuation dissipation theorem for Ising spins and measurement of the linear response function. Phys Rev E 71: 036104. doi: 10.1103/physreve.71.036104
[19]  Baiesi M, Maes C, Wynants B (2009) Fluctuations and response of nonequilibrium states. Phys Rev Lett 103: 010602. doi: 10.1103/physrevlett.103.010602
[20]  Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68: 1259–1273. doi: 10.1103/revmodphys.68.1259
[21]  D’Anna G, Mayor P, Barrat A, Loreto V, Nori F (2003) Observing brownian motion in vibration-fluidized granular matter. Nature 424: 909–912. doi: 10.1038/nature01867
[22]  Gnoli A, Petri A, Dalton F, Pontuale G, Gradenigo G, et al. (2013) Brownian Ratchet in a Thermal Bath Driven by Coulomb Friction. Phys Rev Lett 110: 120601. doi: 10.1103/physrevlett.110.120601
[23]  Sarracino A, Villamaina D, Costantini G, Puglisi A (2010) Granular Brownian motion. J Stat Mech P04013.
[24]  Hayakawa H (2005) Langevin equation with Coulomb friction. Physica D 205: 48–56. doi: 10.1016/j.physd.2004.12.011
[25]  Puglisi A, Baldassarri A, Vulpiani A (2007) Violation of the Einstein relation in Granular Fluids: the role of correlations. J Stat Mech P08016.
[26]  Orpe AV, Kudrolli A (2007) Velocity correlations in dense granular flows observed with internal imaging. Phys Rev Lett 98: 238001. doi: 10.1103/physrevlett.98.238001
[27]  Fiege A, Aspelmeier T, Zippelius A (2009) Long-time tails and cage effect indriven granular fluids. Phys Rev Lett 102: 098001. doi: 10.1103/physrevlett.102.098001
[28]  Sarracino A, Villamaina D, Gradenigo G, Puglisi A (2010) Irreversible dynamics of a massive intruder in dense granular fluids. Europhys. Lett. 92: 34001. doi: 10.1209/0295-5075/92/34001
[29]  Villamaina D, Baldassarri A, Puglisi A, Vulpiani A (2009) The fluctuation-dissipation relation: how does one compare correlation functions and responses?. J. Stat. Mech. P07024.
[30]  Keys AS, Abate AR, Glotzer SC, Durian DC (2007) Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nature Physics 3: 260–264. doi: 10.1038/nphys572

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133