全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Community Interactions Modify the Effects of Pharmaceutical Exposure: A Microcosm Study on Responses to Propranolol in Baltic Sea Coastal Organisms

DOI: 10.1371/journal.pone.0093774

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigated the uptake and effects of a common human pharmaceutical, propranolol, on the structure and function of a coastal Baltic Sea model community consisting of macroalga (Ceramium tenuicorne), mussels (Mytilus edulis trossulus), amphipods (Gammarus spp.), water and sediment. The most sensitive species, the mussel, was affected to the same extent as in previous single species studies, while the effects on the amphipod and alga were smaller or even positive compared to experiments performed in less complex test systems. The observed cascade of beneficial effects was a result of inter-specific species interactions that buffered for more severe effects. The poor condition of the mussel led to a feeding shift from alga to mussel by the amphipods. The better food quality, due to the dietary shift, counteracted the effects of the exposure. Less amphipod grazing, together with increased levels of nutrients in the water was favourable for the alga, despite the negative effects of propranolol. This microcosm study showed effects on organisms on different organizational levels as well as interactions among the different components resulting in indirect exposure effects of both functional and structural nature. The combination of both direct and indirect effects would not have been detected using simpler single- or even two-species study designs. The observed structural changes would in the natural environment have a long-term influence on ecosystem function, especially in a low-biodiversity ecosystem like the Baltic Sea.

References

[1]  Hughes AR (2012) Disturbance and Diversity: An Ecological Chicken and Egg Problem. Nature Education Knowledge 3: 48.
[2]  Fleeger J, Carman K, Nisbet R (2003) Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment 317: 207–233. doi: 10.1016/s0048-9697(03)00141-4
[3]  Hooper D, Chapin F III, Ewel J, Hector A, Inchausti P, et al. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35. doi: 10.1890/04-0922
[4]  Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquatic Toxicology 76: 122–159. doi: 10.1016/j.aquatox.2005.09.009
[5]  Forbes V, Calow P (2012) Promises and problems for the new paradigm for risk assessment and an alternative approach involving predictive systems models. Environmental Toxicology and Chemistry 31: 2663–2671. doi: 10.1002/etc.2009
[6]  Sheehan PJ (1984) Effects on community and ecosystem structure and dynamics. In: PJ S, Miller D, GC B, Ph B, editors. Effects of pollutants at the ecosystem level SCOPE 22. New York, USA: John Wiley & Sons Ltd. 51–100.
[7]  Forbes V, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environmental Toxicology and Chemistry 18: 1544–1556. doi: 10.1002/etc.5620180729
[8]  Holling C (1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23. doi: 10.1146/annurev.es.04.110173.000245
[9]  R?nnb?ck P, Kautsky N, Pihl L, Troell M, S?derqvist T, et al. (2007) Ecosystem Goods and Services from Swedish Coastal Habitats: Identification, Valuation, and Implications of Ecosystem Shifts. Ambio 36: 534–544. doi: 10.1579/0044-7447(2007)36[534:egasfs]2.0.co;2
[10]  Elmgren R (2001) Understanding human impact on the Baltic ecosystem: Changing views in recent decades. Ambio 30: 222–231. doi: 10.1639/0044-7447(2001)030[0222:uhiotb]2.0.co;2
[11]  Wulff F, Bonsdorff E, Gren IM, Johansson S, Stigebrandt A (2001) Giving advice on cost effective measures for a cleaner Baltic Sea: A challenge for science. Ambio 30: 254–259. doi: 10.1639/0044-7447(2001)030[0254:gaocem]2.0.co;2
[12]  Jansson B-O (1980) Natural Systems of the Baltic Sea. Ambio 9: 128–136.
[13]  Elmgren R, Hill C (1997) Ecosystem function at low biodiversity - The Baltic example. In: Ormond RFG, Gage J and Angel M, editors. Marine Biodiversity: Patterns and processes, Cambridge University Press. 319–336.
[14]  Kautsky U (1995) Ecosystem processes in coastal areas of the Baltic Sea. Doctoral thesis, Stockholm University, Stockholm, Sweden.
[15]  Norling P (2009) Importance of blue mussels for biodiversity and ecosystem functioning in subtidal habitats. Doctoral thesis, Stockholm University, Stockholm, Sweden.
[16]  Jjemba P (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicology and Environmental Safety 63: 113–130. doi: 10.1016/j.ecoenv.2004.11.011
[17]  Bengtsson B-E, Gunnarsson B, Wall T, Wennmalm ?, editors (2005) L?kemedel och milj?. Apoteket AB. 148 p.
[18]  Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. Journal of Hazardous Materials 122: 195–204. doi: 10.1016/j.jhazmat.2005.03.012
[19]  Wahlberg C, Bj?rlenius B, Paxéus N (2010) L?kemedelsrester i Stockholms vattenmilj?. F?rekomst, f?rebyggande ?tg?rder och rening av avloppsvatten. Stockholm Vatten AB. 141 p.
[20]  Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemospere 50: 1319–1330. doi: 10.1016/s0045-6535(02)00769-5
[21]  Fal?s P, Andersen HR, Ledin A, la Cour Jansen J (2012) Occurence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plats. Water Science and Technology 66: 783–791. doi: 10.2166/wst.2012.243
[22]  Alexander BS, Wood MD (1987) Stereoselective Blockade of Central [H-3] 5-Hydroxytryptamine Binding to Multiple Sites (5-Ht1a, 5-Ht1b and 5-Ht1c) by Mianserin and Propranolol. Journal of Pharmacy and Pharmacology 39: 664–666. doi: 10.1111/j.2042-7158.1987.tb03452.x
[23]  Escher BI, Bramaz N, Richter M, Lienert J (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environmental Science & Technology 40: 7402–7408. doi: 10.1021/es052572v
[24]  Huggett D, Brooks B, Peterson B, Foran C, Schlenk D (2002) Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. Archives of Environmental Contamination and Toxicology 43: 229–235. doi: 10.1007/s00244-002-1182-7
[25]  Adamo SA (2008) Norepinephrine and octopamine: linking stress and immune function across phyla. Invertebrate Survival Journal 5: 12–19.
[26]  Lacoste A, Malham SK, Cueff A, Poulet SA (2001) Noradrenaline modulates oyster hemocyte phagocytosis via a beta-adrenergic receptor-cAMP signaling pathway. General and Comparative Endocrinology 122: 252–259. doi: 10.1006/gcen.2001.7643
[27]  Massarsky A, Trudeau VL, Moon TW (2011) beta-Blockers as Endocrine Disruptors: The Potential Effects of Human beta-Blockers on Aquatic Organisms. Journal of Experimental Zoology Part a-Ecological Genetics and Physiology 315A: 251–265. doi: 10.1002/jez.672
[28]  Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicology Letters 142: 185–194. doi: 10.1016/s0378-4274(03)00068-7
[29]  Ferrari B, Mons R, Vollat B, Fraysse B, Paxeus N, et al. (2004) Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry 23: 1344–1354. doi: 10.1897/03-246
[30]  Stanley JK, Ramirez AJ, Mottaleb M, Chambliss CK, Brooks BW (2006) Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas. Environmental Toxicology and Chemistry 25: 1780–1786. doi: 10.1897/05-298r1.1
[31]  Ericson H, Thorsén G, Kumblad L (2010) Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquatic Toxicology 99: 223–231. doi: 10.1016/j.aquatox.2010.04.017
[32]  Eriksson Wiklund A-K, Oskarsson H, Thorsén G, Kumblad L (2011) Behavioural and physiological responses to pharmaceutical exposure in macroalgae and grazers from a Baltic Sea littoral community. Aquatic Biology 14: 29–39. doi: 10.3354/ab00380
[33]  Oskarsson H, Eriksson Wiklund A-K, Lindh K, Kumblad L (2012) Effect studies of human pharmaceuticals on Fucus vesiculosus and Gammarus spp. Marine Environmental Research 74: 1–8. doi: 10.1016/j.marenvres.2011.11.001
[34]  Ankar S, Elmgren R (1978) The benthic macro- and meiofauna of the Ask?-Landsort area (northern Baltic proper). A stratified random sampling survey. Contributions from the Ask? Laboratory, Stockholm University, Sweden 11: 115 p.
[35]  Kautsky H (1989) Quantitative distribution of plant and animal communities of the phytobenthic zone in the Baltic Sea. Contributions from the Ask? Laboratory, Stockholm University, Sweden 35: 80 p.
[36]  Jansson B-O, Wulff F (1977) Ecosystem analysis of a shallow sound in the northern Baltic – a joint study by the Ask? group. Contributions from the Ask? Laboratory, Stockholm University, Sweden 18: 160 p.
[37]  Lora-Vilchis MC, Cordero-Esquivel B, Voltolina D (2004) Growth of Artemia franciscana fed Isochrysis sp. and Chaetoceros muelleri during its early life stages. Aquaculture Research 35: 1086–1091. doi: 10.1111/j.1365-2109.2004.01123.x
[38]  Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology 9: 189–194.
[39]  Clausen I, Riisgard HU (1996) Growth, filtration and respiration in the mussel Mytilus edulis: No evidence for physiological regulation of the filter-pump to nutritional needs. Marine Ecology Progress Series 141: 37–45. doi: 10.3354/meps141037
[40]  Maire O, Amouroux J-M, Duchêne J-C, Grémare A (2007) Relationship between filtration activity and food availability in the Mediterranean mussel Mytilus galloprovincialis. Marine Biology 152: 1293–1307. doi: 10.1007/s00227-007-0778-x
[41]  Prevodnik A, Gardestr?m J, Lilja K, Elfwing T, McDonagh B, et al. (2007) Oxidative stress in response to xenobiotics in the blue mussel Mytilus edulis L.: Evidence for variation along a natural salinity gradient of the Baltic Sea. Aquatic Toxicology 82: 63–71. doi: 10.1016/j.aquatox.2007.01.006
[42]  Ericson H, Thorsén G, Kumblad L (2010) Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquatic Toxicology 99: 223–231. doi: 10.1016/j.aquatox.2010.04.017
[43]  Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x
[44]  McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82: 290–297. doi: 10.2307/2680104
[45]  Widdows J (1985) Physiological measurements. In: Bayne B, Brown D, Burns K, Dixon D, Ivanovici A et al., editors. The effects of stress and pollution and marine animals. New York: Praeger. 3–45.
[46]  Calabrese EJ (2008) Hormesis: Why it is important to toxicology and toxicologists. Environmental Toxicology and Chemistry 27: 1451–1474. doi: 10.1897/07-541.1
[47]  Alsterberg C, Ekl?f JS, Gamfeldt L, Havenhand JN, Sundb?ck K (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. PNAS 110: 8603–8608. doi: 10.1073/pnas.1303797110
[48]  Shure DJ (1971) Insecticide effects on early succession in an old ecosystem. Ecology 52: 271–279. doi: 10.2307/1934585
[49]  Relyea R, Schoeppner N, Hoverman J (2005) Pesticides and amphibians: The importance of community context. Ecological Applications 15: 1125–1134. doi: 10.1890/04-0559
[50]  Smith RL, Smith TM (2003) Elements of Ecology. San Francisco: Benjamin Cummnings.
[51]  Ruist E (2008) Fosfor- och kv?vefraktioner i milj??vervakningen – En studie av bohusl?nska vattendrag. L?nsstyrelsen V?stra G?taland l?n.
[52]  Kolding S (1981) Habitat Selection and Life-Cycle Characteristics of 5 Species of the Amphipod Genus Gammarus in the Baltic. Oikos 37: 173–178. doi: 10.2307/3544462
[53]  Kolding S, Fenchel TM (1981) Patterns of Reproduction in Different Populations of 5 Species of the Amphipod Genus Gammarus. Oikos 37: 167–172. doi: 10.2307/3544461
[54]  MacNeil C, Dick JTA, Elwood RW (1999) The dynamics of predation on Gammarus spp. (Crustacea : Amphipoda). Biological Reviews 74: 375–395. doi: 10.1111/j.1469-185x.1999.tb00035.x
[55]  Relyea R, Diecks N (2008) An unforseen chain of events: lethal effects of pesticides on frogs at sublethal concentrations. Ecological Applications 18: 1728–1742. doi: 10.1890/08-0454.1
[56]  Worm B, Barbier E, Beaumont N, Duffy J, Folke C, et al. (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790. doi: 10.1126/science.1132294
[57]  Gunderson L (2000) Ecological resilience – in theory and application. Annual Review of Ecology and Systematics 31: 425–439. doi: 10.1146/annurev.ecolsys.31.1.425
[58]  Janson B-O (1980) Natural systems of the Baltic Sea. Ambio 9: 128–136.
[59]  Bonsdorff E, Pearson T (1999) Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: A functional-group approach. Australian Journal of Ecology 24: 312–326. doi: 10.1046/j.1442-9993.1999.00986.x
[60]  Kautsky N, Evans S (1987) Role of Biodeposition by Mytilus edulis in the Circulation of Matter and Nutrients in a Baltic Coastal Ecosystem. Marine Ecology Progress Series 38: 201–212. doi: 10.3354/meps038201
[61]  Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. Journal of Shellfish Research 23: 51–61.
[62]  Norling P, Kautsky N (2007) Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Marine Ecology Progress Series 351: 163–175. doi: 10.3354/meps07033
[63]  Clements WH, Rohr JR (2009) Community Responses to Contaminants: Using Basic Ecological Principles to Predict Ecotoxicological Effects. Environmental Toxicology and Chemistry 28: 1789–1800. doi: 10.1897/09-140.1
[64]  Rohr JR, Kerby JL, Sih A (2006) Community ecology as a framework for predicting contaminant effects. Trends in Ecology & Evolution 21: 606–613. doi: 10.1016/j.tree.2006.07.002
[65]  Norling P, Kautsky N (2008) Patches of the mussel Mytilus sp are islands of high biodiversity in subtidal sediment habitats in the Baltic Sea. Aquatic Biology 4: 75–87. doi: 10.3354/ab00096
[66]  Koivisto M, Westerbom M, Riihimaki A (2011) Succession-driven facilitation of macrofaunal communities in sublittoral blue mussel habitats. Marine Biology 158: 945–954. doi: 10.1007/s00227-010-1621-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133