全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Biochemical Properties of Ectoine Hydroxylases from Extremophiles and Their Wider Taxonomic Distribution among Microorganisms

DOI: 10.1371/journal.pone.0093809

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II) and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC) and hydroxyectoine (EctD) synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata), pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum), or temperature (Sphingopyxis alaskensis, Paenibacillus lautus) or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri). These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its apo-form, thereby revealing that the iron-free structure exists already in a pre-set configuration to incorporate the iron catalyst. Collectively, our work defines the taxonomic distribution and salient biochemical properties of the ectoine hydroxylase protein family and contributes to the understanding of its structure.

References

[1]  Bremer E, Kr?mer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes. In: Storz G, Hengge-Aronis R, editors. Bacterial Stress Responses: ASM Press. 79–97.
[2]  Wood JM, Bremer E, Csonka LN, Kr?mer R, Poolman B, et al. (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol Part A Mol Integr Physiol 130: 437–460. doi: 10.1016/s1095-6433(01)00442-1
[3]  da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61: 117–153. doi: 10.1007/bfb0102291
[4]  Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch Microbiol 170: 319–330. doi: 10.1007/s002030050649
[5]  Roeβler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Env Microbiol Rep 3: 743–754. doi: 10.1046/j.1462-2920.2001.00252.x
[6]  Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65: 215–238. doi: 10.1146/annurev-micro-090110-102815
[7]  Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA 103: 13997–14002. doi: 10.1073/pnas.0606236103
[8]  Cayley S, Record MT Jr (2003) Roles of cytoplasmic osmolytes, water, and crowding in the response of Escherichia coli to osmotic stress: biophysical basis of osmoprotection by glycine betaine. Biochemistry 42: 12596–12609. doi: 10.1021/bi0347297
[9]  Brown AD (1976) Microbial water stress. Bacteriol Rev 40: 803–846.
[10]  Hoffmann T, Wensing A, Brosius M, Steil L, V?lker U, et al. (2013) Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 195: 510–522. doi: 10.1128/jb.01505-12
[11]  Kuhlmann AU, Bremer E (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Env Microbiol 68: 772–783. doi: 10.1128/aem.68.2.772-783.2002
[12]  Cayley S, Lewis BA, Record MT Jr (1992) Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174: 1586–1595.
[13]  Inbar L, Lapidot A (1988) The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. J Biol Chem 263: 16014–16022.
[14]  Galinski EA, Pfeiffer HP, Trüper HG (1985) 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidine?carboxylicacid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149: 135–139. doi: 10.1111/j.1432-1033.1985.tb08903.x
[15]  Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, et al. (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28: 782–801. doi: 10.1016/j.biotechadv.2010.06.005
[16]  Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15: 95–108. doi: 10.1016/0168-6445(94)90106-6
[17]  Ono H, Sawada K, Khunajakr N, Tao T, Yamamoto M, et al. (1999) Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol 181: 91–99.
[18]  Peters P, Galinski EA, Trüper HG (1990) The biosyntheis of ectoine. FEMS Microbiol Lett 71: 157–162. doi: 10.1111/j.1574-6968.1990.tb03815.x
[19]  Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143: 1141–1149. doi: 10.1099/00221287-143-4-1141
[20]  Bursy J, Pierik AJ, Pica N, Bremer E (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282: 31147–31155. doi: 10.1074/jbc.m704023200
[21]  Calderon MI, Vargas C, Rojo F, Iglesias-Guerra F, Csonka LN, et al. (2004) Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T. Microbiology 150: 3051–3063. doi: 10.1099/mic.0.27122-0
[22]  St?veken N, Pittelkow M, Sinner T, Jensen RA, Heider J, et al. (2011) A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 193: 4456–4468. doi: 10.1128/jb.00345-11
[23]  Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Systems 4: 4. doi: 10.1186/1746-1448-4-4
[24]  Mustakhimov II, Reshetnikov AS, Fedorov DN, Khmelenina VN, Trotsenko YA (2012) Role of EctR as transcriptional regulator of ectoine biosynthesis genes in Methylophaga thalassica. Biochemistry (Mosc) 77: 857–863. doi: 10.1134/s0006297912080068
[25]  Mustakhimov II, Reshetnikov AS, Glukhov AS, Khmelenina VN, Kalyuzhnaya MG, et al. (2010) Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. J Bacteriol 192: 410–417. doi: 10.1128/jb.00553-09
[26]  Kuhlmann AU, Bursy J, Gimpel S, Hoffmann T, Bremer E (2008) Synthesis of the compatible solute ectoine in Virgibacillus pantothenticus is triggered by high salinity and low growth temperature. Appl Environ Microbiol 74: 4560–4563. doi: 10.1128/aem.00492-08
[27]  Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, et al. (2006) The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol 188: 3774–3784. doi: 10.1128/jb.00136-06
[28]  Kuhlmann AU, Hoffmann T, Bursy J, Jebbar M, Bremer E (2011) Ectoine and hydroxyectoine as protectants against osmotic and cold stress: uptake through the SigB-controlled betaine-choline- carnitine transporter-type carrier EctT from Virgibacillus pantothenticus. J Bacteriol 193: 4699–4708. doi: 10.1128/jb.05270-11
[29]  Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, et al. (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74: 7286–7296. doi: 10.1128/aem.00768-08
[30]  Inbar L, Frolow F, Lapidot A (1993) The conformation of new tetrahydropyrimidine derivatives in solution and in the crystal. Eur J Biochem 214: 897–906. doi: 10.1111/j.1432-1033.1993.tb17993.x
[31]  Prabhu J, Schauwecker F, Grammel N, Keller U, Bernhard M (2004) Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl Environ Microbiol 74: 3130–3132. doi: 10.1128/aem.70.5.3130-3132.2004
[32]  Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72: 623–634. doi: 10.1007/s00253-006-0553-9
[33]  Graf R, Anzali S, Buenger J, Pfluecker F, Driller H (2008) The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 26: 326–333. doi: 10.1016/j.clindermatol.2008.01.002
[34]  Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, et al. (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol. 13: 1973–1994. doi: 10.1111/j.1462-2920.2010.02336.x
[35]  Borges N, Ramos A, Raven ND, Sharp RJ, Santos H (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6: 209–216. doi: 10.1007/s007920100236
[36]  Lippert K, Galinski EA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbial Biotechnol 37: 61–65. doi: 10.1007/bf00174204
[37]  Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Systems 4: 6. doi: 10.1186/1746-1448-4-6
[38]  Van-Thuoc D, Hashim SO, Hatti-Kaul R, Mamo G (2013) Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: a study using Bacillus halodurans xylanase as a model. Appl Microbiol Biotechnol 97: 6271–6278. doi: 10.1007/s00253-012-4528-8
[39]  Hausinger RP (2004) FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39: 21–68.
[40]  Aik W, McDonough MA, Thalhammer A, Chowdhury R, Schofield CJ (2012) Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Cur Opin Struct Biol 22: 691–700. doi: 10.1016/j.sbi.2012.10.001
[41]  Hangasky JA, Taabazuing CY, Valliere MA, Knapp MJ (2013) Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the alphaKG-dependent oxygenases. Metallomics 5: 287–301. doi: 10.1039/c3mt20153h
[42]  Grzyska PK, Appelman EH, Hausinger RP, Proshlyakov DA (2010) Insight into the mechanism of an iron dioxygenase by resolution of steps following the FeIV = HO species. Proc Natl Acad Sci USA 107: 3982–3987. doi: 10.1073/pnas.0911565107
[43]  Widderich N, Pittelkow M, H?ppner A, Mulnaes D, Buckel W, et al. (2013) Molecular dynamics simulations and structure-guided mutagenesis provide insight into the architecture of the catalytic core of the ectoine hydroxylase. J Mol Biol 426: 586–600. doi: 10.1016/j.jmb.2013.10.028
[44]  Reuter K, Pittelkow M, Bursy J, Heine A, Craan T, et al. (2010) Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. PloS one 5: e10647. doi: 10.1371/journal.pone.0010647
[45]  Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184: 286–297. doi: 10.1007/s00203-005-0042-z
[46]  Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, et al. (2013) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42: D26–D31. doi: 10.1093/nar/gkt1069
[47]  Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet 29: 170–175. doi: 10.1016/j.tig.2012.12.006
[48]  Vreeland RH, Lichtfiled CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30: 485–495. doi: 10.1099/00207713-30-2-485
[49]  Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65: 3633–3640.
[50]  Bilgin AA, Silverstein J, Jenkins JD (2004) Iron respiration by Acidiphilium cryptum at pH 5. FEMS Microbiol Ecol 49: 137–143. doi: 10.1016/j.femsec.2003.08.018
[51]  Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, et al. (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57: 504–512. doi: 10.1099/ijs.0.64576-0
[52]  Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, et al. (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12: 2658–2676. doi: 10.1111/j.1462-2920.2010.02235.x
[53]  Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, et al. (2001) Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51: 73–79.
[54]  Mead DA, Lucas S, Copeland A, Lapidus A, Cheng JF, et al. (2012) Complete genome sequence of Paenibacillus strain Y4.12MC10, a novel Paenibacillus lautus strain isolated from Obsidian Hot Spring in Yellowstone National Park. Stand Genomic Sci 6: 381–400. doi: 10.4056/sigs.2605792
[55]  Yan Y, Yang J, Dou Y, Chen M, Ping S, et al. (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105: 7564–7569. doi: 10.1073/pnas.0801093105
[56]  Seip B, Galinski EA, Kurz M (2011) Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster. Appl Environ Microbiol 77: 1368–1374. doi: 10.1128/aem.02124-10
[57]  Witt EM, Davies NW, Galinski EA (2011) Unexpected property of ectoine synthase and its application for synthesis of the engineered compatible solute ADPC. Appl Microbiol Biotechnol 91: 113–122. doi: 10.1007/s00253-011-3211-9
[58]  Yan D, Lenz P, Hwa T (2011) Overcoming fluctuation and leakage problems in the quantification of intracellular 2-oxoglutarate levels in Escherichia coli. Appl Environ Microbiol 77: 6763–6771. doi: 10.1128/aem.05257-11
[59]  Straganz GD, Nidetzky B (2006) Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases. Chembiochem 10: 1536–1548. doi: 10.1002/cbic.200600152
[60]  Reshetnikov AS, Khmelenina VN, Mustakhimov, II, Kalyuzhnaya M, Lidstrom M, et al. (2011) Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. Extremophiles 15: 653–663. doi: 10.1007/s00792-011-0396-x
[61]  Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39: W475–478. doi: 10.1093/nar/gkr201
[62]  Thompson JD, Plewniak F, Thierry JC, Poch O (2000) DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res 28: 2919–2926. doi: 10.1093/nar/28.15.2919
[63]  Kurz M, Burch AY, Seip B, Lindow SE, Gross H (2010) Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Appl Environ Microbiol 76: 5452–5462. doi: 10.1128/aem.00686-10
[64]  Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, et al. (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18: 331–340. doi: 10.1016/j.tim.2010.06.003
[65]  Lo CC, Bonner CA, Xie G, D’Souza M, Jensen RA (2009) Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways. Microbiol Mol Biol Rev 73: 594–651. doi: 10.1128/mmbr.00024-09
[66]  Bestvater T, Louis P, Galinski EA (2008) Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottle-neck. Saline Systems 4, 12. doi: 10.1186/1746-1448-4-12
[67]  Shikuma NJ, Davis KR, Fong JNC, Yildiz FH (2013) The transcriptional regulator, CosR, controls compatible solute biosynthesis and transport, motility and biofilm formation in Vibrio cholerae. Environ Microbiol 15: 1387–1399. doi: 10.1111/j.1462-2920.2012.02805.x
[68]  Pflughoeft KJ, Kierek K, Watnick PI (2003) Role of ectoine in Vibrio cholerae osmoadaptation. Appl Environ Microbiol 69: 5919–5927. doi: 10.1128/aem.69.10.5919-5927.2003
[69]  Ongagna-Yhombi SY, Boyd EF (2013) Biosynthesis of the osmoprotectant ectoine, but not glycine betaine, is critical for survival of osmotically stressed Vibrio parahaemolyticus cells. Appl Environ Microbiol 79: 5038–5049. doi: 10.1128/aem.01008-13
[70]  Vargas C, Argandona M, Reina-Bueno M, Rodriguez-Moya J, Fernandez-Aunion C, et al. (2008) Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Systems 4: 14. doi: 10.1186/1746-1448-4-14
[71]  Schubert T, Maskow T, Benndorf D, Harms H, Breuer U (2007) Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol 73: 3343–3347. doi: 10.1128/aem.02482-06
[72]  Rodriguez-Moya J, Argandona M, Iglesias-Guerra F, Nieto JJ, Vargas C (2013) Temperature- and salinity-decoupled overproduction of hydroxyectoine by Chromohalobacter salexigens. Appl Environ Microbiol 79: 1018–1023. doi: 10.1128/aem.02774-12
[73]  Eilert E, Kranz A, Hollenberg CP, Piontek M, Suckow M (2013) Synthesis and release of the bacterial compatible solute 5-hydroxyectoine in Hansenula polymorpha. J Biotechnol 167: 85–93. doi: 10.1016/j.jbiotec.2013.02.005
[74]  Becker J, Sch?fer R, Kohlstedt M, Harder BJ, Borchert NS, et al. (2013) Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact 12: 110. doi: 10.1186/1475-2859-12-110
[75]  Sims D, Brettin T, Detter JC, Han C, Lapidus A, et al. (2009) Complete genome sequence of Kytococcus sedentarius type strain (541). Stand Genomic Sci 1: 12–20. doi: 10.4056/sigs.761
[76]  Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor New York: Cold Spring Harbor Laboratory.
[77]  Lovenberg W, Buchanan BB, Rabinowitz JC (1963) Studies on the chemical nature of Clostridial ferredoxin. J Biol Chem 238: 3899–3913.
[78]  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. doi: 10.1016/s0022-2836(05)80360-2
[79]  Kabsch W (1993) Automatic processing of rotatation diffraction data from crystalls of initially unknown symetry and cell constants. J Appl Crystallogr 26: 795–800. doi: 10.1107/s0021889893005588
[80]  McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40: 658–674. doi: 10.1107/s0021889807021206
[81]  Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255. doi: 10.1107/s0907444996012255
[82]  Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
[83]  Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 283–291. doi: 10.1107/s0021889892009944
[84]  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The protein data bank. Nucleic Acids Res 28: 235–342. doi: 10.1093/nar/28.1.235

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133