全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Involvement of the Akt/NF-κB Pathways in the HTNV-Mediated Increase of IL-6, CCL5, ICAM-1, and VCAM-1 in HUVECs

DOI: 10.1371/journal.pone.0093810

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Hantaan virus (HTNV) infection causes a severe form of HFRS(hemorrhagic fever with renal syndrome)in Asia. Although HTNV has been isolated for nearly forty years, the pathogenesis of HFRS is still unknown, and little is known regarding the signaling pathway that is activated by the virus. Methodology/Principal Findings Cardamonin was selected as a NF-κB inhibitor, and indirect immunofluorescence assays were used to detect the effect of cardamonin on HTNV-infected HUVECs. The effect of cardamonin on the HTNV-induced phosphorylation of Akt and DNA-binding activity of NF-κB were determined using Western blot analysis and electrophoretic mobility shift assays (EMSAs), respectively. Then, flow cytometric and quantitative real-time PCR analyses were performed to quantify the expression levels of the adhesion molecules ICAM-1 and VCAM-1, and the concentrations of IL-6, IL-8, and CCL5 in HUVEC supernatants were examined using ELISA. The results showed that cardamonin did not effect the proliferation of HUVECs or the replication of HTNV in HUVECs. Instead, cardamonin inhibited the phosphorylation of Akt and nuclear transduction of NF-κB and further reduced the expression of the adhesion molecules ICAM-1 and VCAM-1 in HTNV-infected HUVECs. Cardamonin also inhibited the secretion of IL-6 and CCL5, but not IL-8. Conclusion/Significance HTNV replication may not be dependent upon the ability of the virus to activate NF-κB in HUVECs. The Akt/NF-κB pathways may be involved in the pathogenesis of HFRS; therefore, cardamonin may serve as a potential beneficial agent for HFRS therapy.

References

[1]  Kariwa H, Yoshimatsu K, Arikawa J (2007) Hantavirus infection in East Asia. Comp Immunol Microbiol Infect Dis 30: 341–356. doi: 10.1016/j.cimid.2007.05.011
[2]  Kitamura T, Morita C, Komatsu T, Sugiyama K, Arikawa J, et al. (1983) Isolation of virus causing hemorrhagic fever with renal syndrome (HFRS) through a cell culture system. Jpn J Med Sci Biol 36: 17–25. doi: 10.7883/yoken1952.36.17
[3]  Schmaljohn CS, Hasty SE, Dalrymple JM, LeDuc JW, Lee HW, et al. (1985) Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. Science 227: 1041–1044. doi: 10.1126/science.2858126
[4]  Nichol ST, Spiropoulou CF, Morzunov S, Rollin PE, Ksiazek TG, et al. (1993) Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262: 914–917. doi: 10.1126/science.8235615
[5]  Zhang Y, Li XH, Jiang H, Huang CX, Wang PZ, et al. (2008) Expression of L protein of Hantaan virus 84FLi strain and its application for recovery of minigenomes. APMIS 116: 1089–1096. doi: 10.1111/j.1600-0463.2008.01011.x
[6]  Cosgriff TM (1991) Mechanisms of disease in Hantavirus infection: pathophysiology of hemorrhagic fever with renal syndrome. Rev Infect Dis 13: 97–107. doi: 10.1093/clinids/13.1.97
[7]  Hayasaka D, Maeda K, Ennis FA, Terajima M (2007) Increased permeability of human endothelial cell line EA.hy926 induced by hantavirus-specific cytotoxic T lymphocytes. Virus Res 123: 120–127. doi: 10.1016/j.virusres.2006.08.006
[8]  Gavrilovskaya IN, Gorbunova EE, Mackow NA, Mackow ER (2008) Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability. J Virol 82: 5797–5806. doi: 10.1128/jvi.02397-07
[9]  Niikura M, Maeda A, Ikegami T, Saijo M, Kurane I, et al. (2004) Modification of endothelial cell functions by Hantaan virus infection: prolonged hyper-permeability induced by TNF-alpha of hantaan virus-infected endothelial cell monolayers. Arch Virol 149: 1279–1292. doi: 10.1007/s00705-004-0306-y
[10]  Zaki SR, Greer PW, Coffield LM, Goldsmith CS, Nolte KB, et al. (1995) Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol 146: 552–579.
[11]  Saksida A, Wraber B, Avsic-Zupanc T (2011) Serum levels of inflammatory and regulatory cytokines in patients with hemorrhagic fever with renal syndrome. BMC Infect Dis 11: 142. doi: 10.1186/1471-2334-11-142
[12]  Wang PZ, Li ZD, Yu HT, Zhang Y, Wang W, et al. (2012) Elevated serum concentrations of inflammatory cytokines and chemokines in patients with haemorrhagic fever with renal syndrome. J Int Med Res 40: 648–656. doi: 10.1177/147323001204000227
[13]  Sundstrom JB, McMullan LK, Spiropoulou CF, Hooper WC, Ansari AA, et al. (2001) Hantavirus infection induces the expression of RANTES and IP-10 without causing increased permeability in human lung microvascular endothelial cells. J Virol 75: 6070–6085. doi: 10.1128/jvi.75.13.6070-6085.2001
[14]  Macneil A, Nichol ST, Spiropoulou CF (2011) Hantavirus pulmonary syndrome. Virus Res 162: 138–147. doi: 10.1016/j.virusres.2011.09.017
[15]  Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, et al. (2003) T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102: 3675–3683. doi: 10.1182/blood-2003-02-0358
[16]  Qi BT, Wang P, Li J, Ren HX, Xie M (2006) Levels of soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-2 in plasma of patients with hemorrhagic fever with renal syndrome, and significance of the changes in level. Viral Immunol 19: 565–569. doi: 10.1089/vim.2006.19.565
[17]  Han Q, Zhang L, Liu Z, Kang W, Lou S, et al. (2010) Elevated sICAM-1 levels in patients with hemorrhagic fever with renal syndrome caused by Hantaan virus. Eur J Clin Microbiol Infect Dis 29: 1507–1511. doi: 10.1007/s10096-010-1032-x
[18]  Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2: 725–734. doi: 10.1038/nri910
[19]  Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3: 221–227. doi: 10.1038/ni0302-221
[20]  Santoro MG, Rossi A, Amici C (2003) NF-kappaB and virus infection: who controls whom. EMBO J 22: 2552–2560. doi: 10.1093/emboj/cdg267
[21]  Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25: 280–288. doi: 10.1016/j.it.2004.03.008
[22]  Madrid LV, Mayo MW, Reuther JY, Baldwin AS (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276: 18934–18940. doi: 10.1074/jbc.m101103200
[23]  Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS, et al. (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 20: 1626–1638. doi: 10.1128/mcb.20.5.1626-1638.2000
[24]  Kim YJ, Ko H, Park JS, Han IH, Amor EC, et al. (2010) Dimethyl cardamonin inhibits lipopolysaccharide-induced inflammatory factors through blocking NF-kappaB p65 activation. Int Immunopharmacol 10: 1127–1134. doi: 10.1016/j.intimp.2010.06.017
[25]  Lee JH, Jung HS, Giang PM, Jin X, Lee S, et al. (2006) Blockade of nuclear factor-kappaB signaling pathway and anti-inflammatory activity of cardamomin, a chalcone analog from Alpinia conchigera. J Pharmacol Exp Ther 316: 271–278. doi: 10.1124/jpet.105.092486
[26]  Sheikh AM, Ochi H, Manabe A, Masuda J (2005) Lysophosphatidylcholine posttranscriptionally inhibits interferon-gamma-induced IP-10, Mig and I-Tac expression in endothelial cells. Cardiovasc Res 65: 263–271. doi: 10.1016/j.cardiores.2004.09.017
[27]  Lee HW, Lee PW, Johnson KM (1978) Isolation of the etiologic agent of Korean Hemorrhagic fever. J Infect Dis 137: 298–308. doi: 10.1093/infdis/137.3.298
[28]  Vapalahti O, Lundkvist A, Kukkonen SK, Cheng Y, Gilljam M, et al. (1996) Isolation and characterization of Tula virus, a distinct serotype in the genus Hantavirus, family Bunyaviridae. J Gen Virol 77 (Pt 12): 3063–3067. doi: 10.1099/0022-1317-77-12-3063
[29]  Xu Z, Huang CX, Li Y, Wang PZ, Ren GL, et al. (2007) Toll-like receptor 4 siRNA attenuates LPS-induced secretion of inflammatory cytokines and chemokines by macrophages. J Infect 55: e1–9. doi: 10.1016/j.jinf.2007.01.003
[30]  Ren GL, Bai XF, Zhang Y, Chen HM, Huang CX, et al. (2005) Stable inhibition of hepatitis B virus expression and replication by expressed siRNA. Biochem Biophys Res Commun 335: 1051–1059. doi: 10.1016/j.bbrc.2005.07.170
[31]  Yu HT, Jiang H, Zhang Y, Nan XP, Li Y, et al. (2012) Hantaan virus triggers TLR4-dependent innate immune responses. Viral Immunol 25: 387–393. doi: 10.1089/vim.2012.0005
[32]  Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866. doi: 10.1038/sj.onc.1203239
[33]  Bernasconi D, Amici C, La Frazia S, Ianaro A, Santoro MG (2005) The IkappaB kinase is a key factor in triggering influenza A virus-induced inflammatory cytokine production in airway epithelial cells. J Biol Chem 280: 24127–24134. doi: 10.1074/jbc.m413726200
[34]  Amici C, Belardo G, Rossi A, Santoro MG (2001) Activation of I kappa b kinase by herpes simplex virus type 1. A novel target for anti-herpetic therapy. J Biol Chem 276: 28759–28766. doi: 10.1074/jbc.m103408200
[35]  Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711–713. doi: 10.1038/326711a0
[36]  Caposio P, Luganini A, Hahn G, Landolfo S, Gribaudo G (2007) Activation of the virus-induced IKK/NF-kappaB signalling axis is critical for the replication of human cytomegalovirus in quiescent cells. Cell Microbiol 9: 2040–2054. doi: 10.1111/j.1462-5822.2007.00936.x
[37]  Gustems M, Borst E, Benedict CA, Perez C, Messerle M, et al. (2006) Regulation of the transcription and replication cycle of human cytomegalovirus is insensitive to genetic elimination of the cognate NF-kappaB binding sites in the enhancer. J Virol 80: 9899–9904. doi: 10.1128/jvi.00640-06
[38]  Benedict CA, Angulo A, Patterson G, Ha S, Huang H, et al. (2004) Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro. J Virol 78: 741–750. doi: 10.1128/jvi.78.2.741-750.2004
[39]  Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98: 10983–10985. doi: 10.1073/pnas.211430998
[40]  Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387: 673–676. doi: 10.1038/42648
[41]  Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98: 11598–11603. doi: 10.1073/pnas.181181198
[42]  Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, et al. (2002) Phosphorylation of HDM2 by Akt. Oncogene 21: 1955–1962. doi: 10.1038/sj.onc.1205276
[43]  Kane LP, Mollenauer MN, Xu Z, Turck CW, Weiss A (2002) Akt-dependent phosphorylation specifically regulates Cot induction of NF-kappa B-dependent transcription. Mol Cell Biol 22: 5962–5974. doi: 10.1128/mcb.22.16.5962-5974.2002
[44]  Nakabayashi H, Shimizu K (2012) Involvement of Akt/NF-kappaB pathway in antitumor effects of parthenolide on glioblastoma cells in vitro and in vivo. BMC Cancer 12: 453. doi: 10.1186/1471-2407-12-453
[45]  Shah A, Silverstein PS, Singh DP, Kumar A (2012) Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-kappaB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J Neuroinflammation 9: 52. doi: 10.1186/1742-2094-9-52
[46]  Sen T, Sen N, Noordhuis MG, Ravi R, Wu TC, et al. (2012) OGDHL is a modifier of AKT-dependent signaling and NF-kappaB function. PLoS One 7: e48770. doi: 10.1371/journal.pone.0048770
[47]  Balwani S, Chaudhuri R, Nandi D, Jaisankar P, Agrawal A, et al. (2012) Regulation of NF-kappaB activation through a novel PI-3K-independent and PKA/Akt-dependent pathway in human umbilical vein endothelial cells. PLoS One 7: e46528. doi: 10.1371/journal.pone.0046528
[48]  Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, et al. (2013) VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-kappaB pathway in rat model of DSS-induced colitis. Mol Cell Biochem 374: 1–11. doi: 10.1007/s11010-012-1488-3
[49]  Gustin JA, Ozes ON, Akca H, Pincheira R, Mayo LD, et al. (2004) Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J Biol Chem 279: 1615–1620. doi: 10.1074/jbc.m306976200
[50]  Geimonen E, Neff S, Raymond T, Kocer SS, Gavrilovskaya IN, et al. (2002) Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc Natl Acad Sci U S A 99: 13837–13842. doi: 10.1073/pnas.192298899
[51]  Nolte KB, Feddersen RM, Foucar K, Zaki SR, Koster FT, et al. (1995) Hantavirus pulmonary syndrome in the United States: a pathological description of a disease caused by a new agent. Hum Pathol 26: 110–120.
[52]  Mori M, Rothman AL, Kurane I, Montoya JM, Nolte KB, et al. (1999) High levels of cytokine-producing cells in the lung tissues of patients with fatal hantavirus pulmonary syndrome. J Infect Dis 179: 295–302. doi: 10.1086/314597
[53]  Kanerva M, Mustonen J, Vaheri A (1998) Pathogenesis of puumala and other hantavirus infections. Rev Med Virol 8: 67–86. doi: 10.1002/(sici)1099-1654(199804/06)8:2<67::aid-rmv217>3.3.co;2-l
[54]  Sadeghi M, Eckerle I, Daniel V, Burkhardt U, Opelz G, et al. (2011) Cytokine expression during early and late phase of acute Puumala hantavirus infection. BMC Immunol 12: 65. doi: 10.1186/1471-2172-12-65
[55]  Outinen TK, Makela SM, Ala-Houhala IO, Huhtala HS, Hurme M, et al. (2010) The severity of Puumala hantavirus induced nephropathia epidemica can be better evaluated using plasma interleukin-6 than C-reactive protein determinations. BMC Infect Dis 10: 132. doi: 10.1186/1471-2334-10-132
[56]  Jiang H, Wang PZ, Zhang Y, Xu Z, Sun L, et al. (2008) Hantaan virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon, interleukin-6 and tumor necrosis factor-alpha. Virology 380: 52–59. doi: 10.1016/j.virol.2008.07.002
[57]  Shah A, Silverstein PS, Kumar S, Singh DP, Kumar A (2012) Synergistic cooperation between methamphetamine and HIV-1 gsp120 through the P13K/Akt pathway induces IL-6 but not IL-8 expression in astrocytes. PLoS One 7: e52060. doi: 10.1371/journal.pone.0052060
[58]  Tsoyi K, Jang HJ, Nizamutdinova IT, Park K, Kim YM, et al. (2010) PTEN differentially regulates expressions of ICAM-1 and VCAM-1 through PI3K/Akt/GSK-3beta/GATA-6 signaling pathways in TNF-alpha-activated human endothelial cells. Atherosclerosis 213: 115–121. doi: 10.1016/j.atherosclerosis.2010.07.061

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133