全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics

DOI: 10.1371/journal.pone.0093827

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study explored the short-term planktonic microbial community structure and resilience in Lake Lanier (GA, USA) while simultaneously evaluating the technical aspects of identifying taxa via 16S rRNA gene amplicon and metagenomic sequence data. 16S rRNA gene amplicons generated from four temporally discrete samples were sequenced with 454 GS-FLX-Ti yielding ~40,000 rRNA gene sequences from each sample and representing ~300 observed OTUs. Replicates obtained from the same biological sample clustered together but several biases were observed, linked to either the PCR or sequencing-preparation steps. In comparisons with companion whole-community shotgun metagenome datasets, the estimated number of OTUs at each timepoint was concordant, but 1.5 times and ~10 times as many phyla and genera, respectively, were identified in the metagenomes. Our analyses showed that the 16S rRNA gene captures broad shifts in community diversity over time, but with limited resolution and lower sensitivity compared to metagenomic data. We also identified OTUs that showed marked shifts in abundance over four close timepoints separated by perturbations and tracked these taxa in the metagenome vs. 16S rRNA amplicon data. A strong summer storm had less of an effect on community composition than did seasonal mixing, which revealed a distinct succession of organisms. This study provides insights into freshwater microbial communities and advances the approaches for assessing community diversity and dynamics in situ.

References

[1]  Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, et al. (2009) Bacterial community variation in human body habitats across space and time. Science 326: 1694–1697. doi: 10.1126/science.1177486
[2]  Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, et al. (2012) Defining seasonal marine microbial community dynamics. ISME J 6: 298–308. doi: 10.1038/ismej.2011.107
[3]  Kent AD, Jones SE, Yannarell AC, Graham JM, Lauster GH, et al. (2004) Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol 48: 550–560. doi: 10.1007/s00248-004-0244-y
[4]  Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, et al. (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13: 135–144. doi: 10.1111/j.1462-2920.2010.02315.x
[5]  Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103: 12115–12120. doi: 10.1073/pnas.0605127103
[6]  Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6: 639–641. doi: 10.1038/nmeth.1361
[7]  Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing Noise From Pyrosequenced Amplicons. BMC Bioinformatics 12. doi: 10.1186/1471-2105-12-38
[8]  Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, et al. (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75: 5227–5236. doi: 10.1128/aem.00592-09
[9]  Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12: 1889–1898. doi: 10.1111/j.1462-2920.2010.02193.x
[10]  McDonald IR, Kampfer P, Topp E, Warner KL, Cox MJ, et al. (2005) Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments. Int J Syst Evol Microbiol 55: 1827–1832. doi: 10.1099/ijs.0.63716-0
[11]  Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc B Biol Sci 361: 1929–1940. doi: 10.1098/rstb.2006.1920
[12]  Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25: 39–67. doi: 10.1111/j.1574-6976.2001.tb00571.x
[13]  Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, et al. (2013) Comparative metagenomic and rRNA microbial diversity characterization using Archaeal and Bacterial synthetic communities. Environ Microbiol 15: 1882–1899. doi: 10.1111/1462-2920.12086
[14]  Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 108: 14288–14293. doi: 10.1073/pnas.1101591108
[15]  Gilbert JA, Field D, Swift P, Thomas S, Cummings D, et al. (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation. PLoS One 5: e15545. doi: 10.1371/journal.pone.0015545
[16]  Rodriguez-Brito B, Li LL, Wegley L, Furlan M, Angly F, et al. (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4: 739–751. doi: 10.1038/ismej.2010.1
[17]  Bazinet AL, Cummings MP (2012) A comparative evaluation of sequence classification programs. BMC Bioinformatics 13: 92. doi: 10.1186/1471-2105-13-92
[18]  Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, et al. (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12 doi:10.1186/gb-2011-12-2-r18.
[19]  Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3: 1314–1317. doi: 10.1038/ismej.2009.72
[20]  Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput: 165–176. doi: 10.1142/9789814335058_0018
[21]  Steven B, Gallegos-Graves L, Starkenburg SR, Chain PS, Kuske CR (2012) Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study. Environ Microbiol Rep 4: 248–256. doi: 10.1111/j.1758-2229.2012.00328.x
[22]  Portillo MC, Anderson SP, Fierer N (2012) Temporal variability in the diversity and composition of stream bacterioplankton communities. Environ Microbiol 14: 2417–2428. doi: 10.1111/j.1462-2920.2012.02785.x
[23]  Yannarell AC, Kent AD, Lauster GH, Kratz TK, Triplett EW (2003) Temporal patterns in bacterial communities in three temperate lakes of different trophic status. Microb Ecol 46: 391–405. doi: 10.1007/s00248-003-1008-9
[24]  Zwisler W, Selje N, Simon M (2003) Seasonal patterns of the bacterioplankton community composition in a large mesotrophic lake. Aquat Microb Ecol 31: 211–225. doi: 10.3354/ame031211
[25]  Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6: 330–342. doi: 10.1038/ismej.2011.113
[26]  Lindstrom ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71: 8201–8206. doi: 10.1128/aem.71.12.8201-8206.2005
[27]  Crump RC, Adams HE, Hobbie JE, Kling GW (2007) Biogeography of bacterioplankton in lakes and streams of an Arctic tundra catchment. Ecology 88: 1365–1378. doi: 10.1890/06-0387
[28]  Methe BA, Zehr JP (1999) Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry? Hydrobiologia 401: 77–96. doi: 10.1007/978-94-011-4201-4_7
[29]  Oh S, Caro-Quintero A, Tsementzi D, Deleon-Rodriguez N, Luo C, et al. (2011) Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl Environ Microbiol 77: 6000–6011. doi: 10.1128/aem.00107-11
[30]  Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303
[31]  DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072. doi: 10.1128/aem.03006-05
[32]  Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol Mol Biol Rev 75: 14–49. doi: 10.1128/mmbr.00028-10
[33]  Li R, Zhu H, Ruan J, Qian W, Fang X, et al. (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: 265–272. doi: 10.1101/gr.097261.109
[34]  Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: 821–829. doi: 10.1101/gr.074492.107
[35]  Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT (2012) Individual genome assembly from complex community short-read metagenomic datasets. ISME J 6: 898–901. doi: 10.1038/ismej.2011.147
[36]  Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38: e132. doi: 10.1093/nar/gkq275
[37]  Luo C Konstantinidis KT (Under revision) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nuc Acids Res.
[38]  Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, et al. (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6: 1621–1624. doi: 10.1038/ismej.2012.8
[39]  Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18: 117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x
[40]  Good IJ, Toulmin GH (1956) The Number of New Species, and the Increase in Population Coverage, When a Sample Is Increased. Biometrika 43: 45–63. doi: 10.1093/biomet/43.1-2.45
[41]  Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69: 5248–5254. doi: 10.1128/aem.69.9.5248-5254.2003
[42]  Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127.
[43]  Corzo A, Jimenez-Gomez F, Gordillo FJL, Garcia-Ruiz R, Niell FX (1999) Synechococcus and Prochlorococcus-like populations detected by flow cytometry in a eutrophic reservoir in summer. J Plankton Res 21: 1575–1581. doi: 10.1093/plankt/21.8.1575
[44]  Stenuite S, Tarbe A-L, Sarmento H, Unrein F, Pirlot S, et al. (2009) Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. J Plankton Res 31: 1531–1544. doi: 10.1093/plankt/fbp090
[45]  Rodriguez-R L, Konstantinidis K (2013) Nonpareil: A redundancy-based approach to. assess the level of coverage in metagenomic datasets. Bioinformatics doi:10.1093/bioinformatics/btt584.
[46]  Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186: 2629–2635. doi: 10.1128/jb.186.9.2629-2635.2004
[47]  Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10: 504–509. doi: 10.1016/j.mib.2007.08.006
[48]  Strous M, Kraft B, Bisdorf R, Tegetmeyer HE (2012) The binning of metagenomic contigs for microbial physiology of mixed cultures. Front Microbiol 3: 410. doi: 10.3389/fmicb.2012.00410
[49]  Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, et al. (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26: 1029–1034. doi: 10.1038/nbt.1488
[50]  Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, et al. (2011) PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol 7: e1001061. doi: 10.1371/journal.pcbi.1001061
[51]  Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF (2011) EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12: R44. doi: 10.1186/gb-2011-12-5-r44
[52]  Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, et al. (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Meth 10: 57–59. doi: 10.1038/nmeth.2276
[53]  Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, et al. (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38: e200. doi: 10.1093/nar/gkq873
[54]  Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267. doi: 10.1128/aem.00062-07
[55]  Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, et al. (2012) Impact of training sets on classification of high-throughput bacterial 16S rRNA gene surveys. The ISME journal 6: 94–103. doi: 10.1038/ismej.2011.82
[56]  Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, et al. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41: e1 doi:10.1093/nar/gks808.
[57]  Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105: 11512–11519. doi: 10.1073/pnas.0801925105
[58]  Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD (2007) Synchrony in aquatic microbial community dynamics. ISME J 1: 38–47. doi: 10.1038/ismej.2007.6
[59]  Newton RJ, McMahon KD (2011) Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ Microbiol 13: 887–899. doi: 10.1111/j.1462-2920.2010.02387.x
[60]  Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, et al. (2007) Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr 52: 487–494. doi: 10.4319/lo.2007.52.2.0487
[61]  Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, et al. (2011) Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environ Microbiol 13: 2752–2767. doi: 10.1111/j.1462-2920.2011.02546.x
[62]  Shade A, Read JS, Youngblut ND, Fierer N, Knight R, et al. (2012) Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J 6: 2153–2167. doi: 10.1038/ismej.2012.56

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133