全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Interleukin-19 Impairment in Active Crohn’s Disease Patients

DOI: 10.1371/journal.pone.0093910

Full-Text   Cite this paper   Add to My Lib

Abstract:

The exact function of interleukin-19 (IL-19) on immune response is poorly understood. In mice, IL-19 up-regulates TNFα and IL-6 expression and its deficiency increases susceptibility to DSS-induced colitis. In humans, IL-19 favors a Th2 response and is elevated in several diseases. We here investigate the expression and effects of IL-19 on cells from active Crohn’s disease (CD) patient. Twenty-three active CD patients and 20 healthy controls (HC) were included. mRNA and protein IL-19 levels were analyzed in monocytes. IL-19 effects were determined in vitro on the T cell phenotype and in the production of cytokines by immune cells. We observed that unstimulated and TLR-activated monocytes expressed significantly lower IL-19 mRNA in active CD patients than in HC (logFC = ?1.97 unstimulated; ?1.88 with Pam3CSK4; and ?1.91 with FSL-1; p<0.001). These results were confirmed at protein level. Exogenous IL-19 had an anti-inflammatory effect on HC but not on CD patients. IL-19 decreased TNFα production in PBMC (850.7±75.29 pg/ml vs 2626.0±350 pg/ml; p<0.01) and increased CTLA4 expression (22.04±1.55% vs 13.98±2.05%; p<0.05) and IL-4 production (32.5±8.9 pg/ml vs 13.5±2.9 pg/ml; p<0.05) in T cells from HC. IL-10 regulated IL-19 production in both active CD patients and HC. We observed that three of the miRNAs that can modulate IL-19 mRNA expression, were up-regulated in monocytes from active CD patients. These results suggested that IL-19 had an anti-inflammatory role in this study. Defects in IL-19 expression and the lack of response to this cytokine could contribute to inflammatory mechanisms in active CD patients.

References

[1]  Gallagher G, Dickensheets H, Eskdale J, Izotova LS, Mirochnitchenko OV, et al. (2000) Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 1: 442–450. doi: 10.1038/sj.gene.6363714
[2]  Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC (2001) Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167: 3545–3549. doi: 10.4049/jimmunol.167.7.3545
[3]  Zdanov A (2010) Structural analysis of cytokines comprising the IL-10 family. Cytokine Growth Factor Rev 21: 325–330. doi: 10.1016/j.cytogfr.2010.08.003
[4]  Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, et al. (2006) Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol 36: 380–388. doi: 10.1002/eji.200425523
[5]  Jordan WJ, Eskdale J, Boniotto M, Lennon GP, Peat J, et al. (2005) Human IL-19 regulates immunity through auto-induction of IL-19 and production of IL-10. Eur J Immunol 35: 1576–1582. doi: 10.1002/eji.200425317
[6]  Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, et al. (2002) IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 169: 4288–4297. doi: 10.4049/jimmunol.169.8.4288
[7]  Yeh CH, Cheng BC, Hsu CC, Chen HW, Wang JJ, et al. (2011) Induced interleukin-19 contributes to cell-mediated immunosuppression in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Ann Thorac Surg 92: 1252–1259. doi: 10.1016/j.athoracsur.2011.04.061
[8]  Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, et al. (2004) IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 173: 6712–6718. doi: 10.4049/jimmunol.173.11.6712
[9]  Hsing CH, Hsu CC, Chen WY, Chang LY, Hwang JC, et al. (2007) Expression of IL-19 correlates with Th2 cytokines in uraemic patients. Nephrol Dial Transplant 22: 2230–2238. doi: 10.1093/ndt/gfm179
[10]  Li HH, Lin YC, Chen PJ, Hsiao CH, Lee JY, et al. (2005) Interleukin-19 upregulates keratinocyte growth factor and is associated with psoriasis. Br J Dermatol 153: 591–595. doi: 10.1111/j.1365-2133.2005.06665.x
[11]  Sun DP, Yeh CH, So E, Wang LY, Wei TS, et al. (2013) Interleukin (IL)-19 promoted skin wound healing by increasing fibroblast keratinocyte growth factor expression. Cytokine 62: 360–368. doi: 10.1016/j.cyto.2013.03.017
[12]  Hsing CH, Li HH, Hsu YH, Ho CL, Chuang SS, et al. (2008) The distribution of interleukin-19 in healthy and neoplastic tissue. Cytokine 44: 221–228. doi: 10.1016/j.cyto.2008.06.007
[13]  Chen YY, Li CF, Yeh CH, Chang MS, Hsing CH (2013) Interleukin-19 in breast cancer. Clin Dev Immunol 2013: 294320. doi: 10.1155/2013/294320
[14]  Hsing CH, Chiu CJ, Chang LY, Hsu CC, Chang MS (2008) IL-19 is involved in the pathogenesis of endotoxic shock. Shock 29: 7–15. doi: 10.1097/shk.0b013e318067de40
[15]  Pace E, Scafidi V, Di Bona D, Siena L, Chiappara G, et al. (2012) Increased expression of IL-19 in the epithelium of patients with chronic rhinosinusitis and nasal polyps. Allergy 67: 878–886. doi: 10.1111/j.1398-9995.2012.02842.x
[16]  England RN, Preston KJ, Scalia R, Autieri MV (2013) Interleukin-19 Decreases Leukocyte-Endothelial Cell Interactions by Reduction in Endothelial Cell Adhesion Molecule mRNA Stability. Am J Physiol Cell Physiol.
[17]  England RN, Autieri MV (2012) Anti-inflammatory effects of interleukin-19 in vascular disease. Int J Inflam 2012: 253583. doi: 10.1155/2012/253583
[18]  Gabunia K, Jain S, England RN, Autieri MV (2011) Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility. Am J Physiol Cell Physiol 300: C896–906. doi: 10.1152/ajpcell.00439.2010
[19]  Hsu YH, Hsieh PP, Chang MS (2012) Interleukin-19 blockade attenuates collagen-induced arthritis in rats. Rheumatology (Oxford) 51: 434–442. doi: 10.1093/rheumatology/ker127
[20]  Alanara T, Karstila K, Moilanen T, Silvennoinen O, Isomaki P (2010) Expression of IL-10 family cytokines in rheumatoid arthritis: elevated levels of IL-19 in the joints. Scand J Rheumatol 39: 118–126. doi: 10.3109/03009740903170823
[21]  Sakurai N, Kuroiwa T, Ikeuchi H, Hiramatsu N, Maeshima A, et al. (2008) Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation. Rheumatology (Oxford) 47: 815–820. doi: 10.1093/rheumatology/ken061
[22]  Azuma YT, Matsuo Y, Kuwamura M, Yancopoulos GD, Valenzuela DM, et al. (2010) Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm Bowel Dis 16: 1017–1028. doi: 10.1002/ibd.21151
[23]  Canto E, Ricart E, Monfort D, Gonzalez-Juan D, Balanzo J, et al. (2006) TNF alpha production to TLR2 ligands in active IBD patients. Clin Immunol 119: 156–165. doi: 10.1016/j.clim.2005.12.005
[24]  Beltran CJ, Candia E, Erranz B, Figueroa C, Gonzalez MJ, et al. (2009) Peripheral cytokine profile in Chilean patients with Crohn’s disease and ulcerative colitis. Eur Cytokine Netw 20: 33–38.
[25]  Garcia de Tena J, Manzano L, Leal JC, San Antonio E, Sualdea V, et al. (2006) Distinctive pattern of cytokine production and adhesion molecule expression in peripheral blood memory CD4+ T cells from patients with active Crohn’s disease. J Clin Immunol 26: 233–242. doi: 10.1007/s10875-006-9016-4
[26]  Strober W, Ludviksson BR, Fuss IJ (1998) The pathogenesis of mucosal inflammation in murine models of inflammatory bowel disease and Crohn disease. Ann Intern Med 128: 848–856. doi: 10.7326/0003-4819-128-10-199805150-00009
[27]  Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, et al. (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75: 253–261. doi: 10.1016/0092-8674(93)80067-o
[28]  Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274. doi: 10.1016/0092-8674(93)80068-p
[29]  Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, et al. (2007) Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178: 7520–7524. doi: 10.4049/jimmunol.178.12.7520
[30]  Bianchini R, Bistoni O, Alunno A, Petrillo MG, Ronchetti S, et al. (2011) CD4(+) CD25(low) GITR(+) cells: a novel human CD4(+) T-cell population with regulatory activity. Eur J Immunol 41: 2269–2278. doi: 10.1002/eji.201040943
[31]  Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154–158. doi: 10.1093/nar/gkm952
[32]  Gallagher G (2010) Interleukin-19: multiple roles in immune regulation and disease. Cytokine Growth Factor Rev 21: 345–352. doi: 10.1016/j.cytogfr.2010.08.005
[33]  Guarnieri DJ, DiLeone RJ (2008) MicroRNAs: a new class of gene regulators. Ann Med 40: 197–208. doi: 10.1080/07853890701771823
[34]  Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR (2011) Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10?/? mice precedes expression in the colon. J Immunol 187: 5834–5841. doi: 10.4049/jimmunol.1100922
[35]  Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, et al. (2012) Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis 18: 889–899. doi: 10.1002/ibd.21912
[36]  Hofmann SR, Moller J, Rauen T, Paul D, Gahr M, et al. (2012) Dynamic CpG-DNA methylation of Il10 and Il19 in CD4+ T lymphocytes and macrophages: effects on tissue-specific gene expression. Klin Padiatr 224: 53–60. doi: 10.1055/s-0031-1291359
[37]  Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, et al. (2002) Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277: 47517–47523. doi: 10.1074/jbc.m205114200
[38]  Wolk K, Kunz S, Asadullah K, Sabat R (2002) Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 168: 5397–5402. doi: 10.4049/jimmunol.168.11.5397
[39]  Gallagher G, Eskdale J, Jordan W, Peat J, Campbell J, et al. (2004) Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int Immunopharmacol 4: 615–626. doi: 10.1016/j.intimp.2004.01.005
[40]  Wahl C, Muller W, Leithauser F, Adler G, Oswald F, et al. (2009) IL-20 receptor 2 signaling down-regulates antigen-specific T cell responses. J Immunol 182: 802–810. doi: 10.4049/jimmunol.182.2.802
[41]  Kunz S, Wolk K, Witte E, Witte K, Doecke WD, et al. (2006) Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp Dermatol 15: 991–1004. doi: 10.1111/j.1600-0625.2006.00516.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133