[1] | Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, et al. (2005) Electrochemical approach of anticancer drugs–DNA interaction. J Pharm Biomed Anal 37: 205–17. doi: 10.1016/j.jpba.2004.10.037
|
[2] | Li J, Shuang S, Dong C (2009) Study on the phosphorescence characterizations of palmatine chloride on the solid substrate and its interaction with ctDNA. Talanta 77: 1043–9. doi: 10.1016/j.talanta.2008.08.012
|
[3] | Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2: 188–200. doi: 10.1038/nrc749
|
[4] | Liu YJ, Wei XY, Wu FH, Mei WJ, He LX (2008) Interaction studies of DNA binding of ruthenium(II) mixed-ligand complexes: [Ru(phen)2(dtmi)]2+ and [Ru(phen)2(dtni)]2+. Spectrochim Acta A 70: 171–176. doi: 10.1016/j.saa.2007.07.029
|
[5] | Shi Y, Guo C, Sun Y, Liu Z, Xu F, et al. (2011) Interaction between DNA and microcystin-LR studied by spectra analysis and atomic force microscopy. Biomacromolecules 12: 797–803. doi: 10.1021/bm101414w
|
[6] | Ding YH, Zhang L, Xie J, Guo R (2010) Binding characteristics and molecular mechanism of interaction between ionic liquid and DNA. J Phys Chem B 114: 2033–2043. doi: 10.1021/jp9104757
|
[7] | Elder RM, Emrick T, Jayaraman A (2011) Understanding the effect of polylysine architecture on DNA binding using molecular dynamics simulations. Biomacromolecules 12: 3870–3879. doi: 10.1021/bm201113y
|
[8] | Chen AY, Liu LF (1994) DNA Topoisomerases: Essential Enzymes and Lethal Targets. Annu Rev Pharmacol Toxicol 34: 191–218. doi: 10.1146/annurev.pa.34.040194.001203
|
[9] | Pilch DS, Kirolos MA, Liu X, Plum GE, Breslauer KJ (1995) Berenil [1,3-bis(4′- amidinophenyl)triazene] Binding to DNA Duplexes and to a RNA Duplex: Evidence for Both Intercalative and Minor Groove Binding Properties. Biochemistry 34: 9962–9976. doi: 10.1021/bi00031a019
|
[10] | Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242. doi: 10.1093/nar/28.1.235
|
[11] | Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, et al. (1996) Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273: 1109–1111. doi: 10.1126/science.273.5278.1109
|
[12] | Taki K, Fukushima T, Ise R, Horii I, Yoshida T (2013) Microarray analysis of 6-mercaptopurine-induced-toxicity-relate?dgenes and microRNAs in the rat placenta. J Toxicol Sci 38: 159–167. doi: 10.2131/jts.38.159
|
[13] | Kim HL, Kim HN, Lee EJ (2006) Gene Expression Profiling of 6-MP (6 mercaptopurine) in Liver. Genomics & Informatics 4: 16–22.
|
[14] | Kypr J, Kejnovská I, Renciuk D, Vorlícková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37: 1713–1725. doi: 10.1093/nar/gkp026
|
[15] | Sprecher CA, Baase WA, Johnson WC (1979) Conformation and circular dichroism of DNA. Biopolymers 18: 1009–1019. doi: 10.1002/bip.1979.360180418
|
[16] | Hillen W, Wells RD (1980) Circular dichroism studies of the B goes to A conformational transition in seven small DNA restriction fragments containing the Escherichia coli lactose control region. Nucleic Acids Res 8: 5427–5444. doi: 10.1093/nar/8.22.5427
|
[17] | Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: A Laboratory Manual. NY: Cold Spring Harbor Laboratory.
|
[18] | Chuan D, Li-hua D, Yu-xia W, Jun-fen L, Yan-li W (2003) Spectroscopy behavior of 6-Mercaptopurine, Azathiopurine, and 8-Azaguanine. Spectrochim Acta A Mol Biomol Spectrosc 59: 3131–7. doi: 10.1016/s1386-1425(03)00121-5
|
[19] | Nakayama T, Kimura T, Kodama M, Nagata C (1983) Generation of hydrogen peroxide and superoxide anion from active metabolites of naphthylamine and amino azo dyes: its possible role in carcinogenesis. Carcinogenesis 4: 765–769. doi: 10.1093/carcin/4.6.765
|
[20] | Pool-Zobel BL, Guigas C, Klein RG, Neudecker CH, Renner HW, et al. (1993) Assessment of genotoxic effects by lindane. Food and Chemical Toxicology 31: 271–283. doi: 10.1016/0278-6915(93)90077-c
|
[21] | Singh NP, McCoy MT, Tice RR, Schneider EL (1998) A simple technique for quantitation of low levels of DNA damage in individual cells. Experiment Cell Research 175: 184–191. doi: 10.1016/0014-4827(88)90265-0
|
[22] | Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, et al. (2000) Single cell gel/comet assay; guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis 35: 206–221. doi: 10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j
|
[23] | Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, et al. (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111: 3051–8. doi: 10.1021/ja00190a046
|
[24] | Rahban M, Divsalar A, Saboury AA, Golestani A (2010) Nanotoxicity and spectroscopy studies of silver nanoparticle: Calf thymus DNA and K562 as targets. J Phys Chem C 114: 5798–5803. doi: 10.1021/jp910656g
|
[25] | Chen QY, Li DH, Zhao Y, Yang HH, Zhu QZ et al. (1999) Interaction of a novel red-region fluorescent probe, Nile blue, with DNA and its application to nucleic acids assay. Analyst: 124, 901–6.
|
[26] | Kashanian S, Dolatabadi JEN (2010) In vitro studies on calf thymus DNA interaction and 2-tert-butyl-4-methylphenol food additive. Eur Food Res Technol 230: 821–825. doi: 10.1007/s00217-010-1226-6
|
[27] | Song YM, Kang JW, Zhou J, Wang ZH, Lu XQ, et al. (2000) Study on the fluorescence spectra and electrochemical behavior of ZnL2 and Morin with DNA. Spectrochim Acta A 56: 2491–7. doi: 10.1016/s1386-1425(00)00340-1
|
[28] | Liu HK, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44: 349–359. doi: 10.1021/ar100140e
|
[29] | Kakkar R, Garg R (2002) Suruchi (2002) Theoretical study of tautomeric structures and fluorescence spectra of Hoechst 33258. J Mol Struct THEOCHEM 579: 109–113. doi: 10.1016/s0166-1280(01)00721-7
|
[30] | Guan Y, Zhou W, Yao XH, Zhao MP, Li YZ (2006) Determination of nucleic acids based on the fluorescence quenching of Hoechst 33258 at pH 4.5. Anal Chim Acta 570: 21–28. doi: 10.1016/j.aca.2006.03.106
|
[31] | Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3: 18–30. doi: 10.1016/s0022-2836(61)80004-1
|
[32] | Kumar CV, Asuncion EH (1992) Sequence dependent energy transfer from DNA to a simple aromatic chromophore. J Chem Soc Chem Commun 6: 470–472. doi: 10.1039/c39920000470
|
[33] | Kumar CV, Turner RS, Asuncion EH (1993) Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J Photochem Photobiol A: Chem 74: 231–238. doi: 10.1016/1010-6030(93)80121-o
|
[34] | Lepecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. Mol Biol 27: 87–105. doi: 10.1016/0022-2836(67)90353-1
|
[35] | Bonincontro A, Falivene M, LaMesa C, Risuleo G, RuizPena M (2008) Dynamics of DNA adsorption on and release from SDS-DDAB cat-anionic vesicles: a multitechnique study. Langmuir 24: 1973–1978. doi: 10.1021/la701730h
|
[36] | Nejedly K, Chladkova J, Vorlickova M, Hrabcova I, Kypr J (2005) Mapping the B–A conformational transition along plasmid DNA. Nucl Acids Res 33: 1–8.
|
[37] | M Vorlícková (1995) Conformational transitions of alternating purine–pyrimidine DNAs in perchlorate ethanol solutions. Biophys J 69: 2033–2043. doi: 10.1016/s0006-3495(95)80073-1
|
[38] | Kypr J, Vorlickova M (2002) Circular dichroism spectroscopy reveals invariant conformation of guanine runs in DNA. Biopolymers (Biospectroscopy) 67: 275–277. doi: 10.1002/bip.10112
|
[39] | Uma MP, Palaniandavar MJ (2004) DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines–effect of hydrogen-bonding on DNA-binding affinity. Inorg Biochem 98: 219–230. doi: 10.1016/j.jinorgbio.2003.09.003
|
[40] | Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12: 89–110. doi: 10.1002/bip.1973.360120109
|
[41] | Jain SS, Matjaz A, Hud NV (2003) Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne-driven duplex disproportionation. Nucleic Acids Res 31: 4608–4614. doi: 10.1093/nar/gkg648
|
[42] | Mergny JL, Duval-Valentin G, Nguyen CH, Perrouault L, Faucon B, et al. (1992) Triple helix-specific ligands. Science 256: 1681–1684. doi: 10.1126/science.256.5064.1681
|
[43] | Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32: 2573–2584. doi: 10.1021/bi00061a015
|
[44] | Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither delta-nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31: 9319–9324. doi: 10.1021/bi00154a001
|
[45] | Tsilikia P, Perdihb F, Turelb I, Psomasa G (2013) Structure, DNA and albumin-binding of the manganese(II) complex with the non-steroidal antiinflammatory drug niflumic acid. Polyhedron 53: 215–222. doi: 10.1016/j.poly.2013.01.049
|
[46] | Rafique B, Khalid AM, Akhtar K, Jabbar A (2013) Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosens Bioelectron 44: 21–26. doi: 10.1016/j.bios.2012.12.028
|
[47] | Wang Y, Lin GW, Hong J, Li L, Lu T, et al. (2009) Synthesis, structures and DNA binding of ternary transition metal complexes M (II)L with the 2,2′-bipyridylamine (L = p-aminobenzenecarboxylic acid, M = Ni, Cu and Zn). Inorg Chim Acta 362: 377–384. doi: 10.1016/j.ica.2008.04.017
|
[48] | Onoue S, Seto Y, Gandy G, Yamada S (2009) Drug-induced phototoxicity; an early in vitro identification of phototoxic potential of new drug entities in drug discovery and development. Curr Drug Saf 4: 123–136. doi: 10.2174/157488609788173044
|