全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Interaction of 6 Mercaptopurine with Calf Thymus DNA – Deciphering the Binding Mode and Photoinduced DNA Damage

DOI: 10.1371/journal.pone.0093913

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA is one of the major intracellular targets for a wide range of anticancer and antibiotic drugs. Elucidating the binding between small molecules and DNA provides great help in understanding drug-DNA interactions and in designing of new and promising drugs for clinical use. The ability of small molecules to bind and interfere with DNA replication and transcription provides further insight into how the drugs control the expression of genes. Interaction of an antimetabolite anticancer drug 6mercaptopurine (6MP) with calf thymus DNA was studied using various approaches like UV-visible spectroscopy, fluorescence spectroscopy, CD, viscosity and molecular docking. UV-visible spectroscopy confirmed 6MP-DNA interaction. Steady state fluorescence experiments revealed a moderate binding constant of 7.48×103 M?1 which was consistent with an external binding mode. Competitive displacement assays further confirmed a non-intercalative binding mode of 6MP which was further confirmed by CD and viscosity experiments. Molecular docking further revealed the minimum energy conformation (?119.67 kJ/mole) of the complex formed between DNA and 6MP. Hence, the biophysical techniques and in-silico molecular docking approaches confirmed the groove binding/electrostatic mode of interaction between 6MP and DNA. Further, photo induced generation of ROS by 6MP was studied spectrophotometrically and DNA damage was assessed by plasmid nicking and comet assay. There was a significant increase in ROS generation and consequent DNA damage in the presence of light.

References

[1]  Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, et al. (2005) Electrochemical approach of anticancer drugs–DNA interaction. J Pharm Biomed Anal 37: 205–17. doi: 10.1016/j.jpba.2004.10.037
[2]  Li J, Shuang S, Dong C (2009) Study on the phosphorescence characterizations of palmatine chloride on the solid substrate and its interaction with ctDNA. Talanta 77: 1043–9. doi: 10.1016/j.talanta.2008.08.012
[3]  Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2: 188–200. doi: 10.1038/nrc749
[4]  Liu YJ, Wei XY, Wu FH, Mei WJ, He LX (2008) Interaction studies of DNA binding of ruthenium(II) mixed-ligand complexes: [Ru(phen)2(dtmi)]2+ and [Ru(phen)2(dtni)]2+. Spectrochim Acta A 70: 171–176. doi: 10.1016/j.saa.2007.07.029
[5]  Shi Y, Guo C, Sun Y, Liu Z, Xu F, et al. (2011) Interaction between DNA and microcystin-LR studied by spectra analysis and atomic force microscopy. Biomacromolecules 12: 797–803. doi: 10.1021/bm101414w
[6]  Ding YH, Zhang L, Xie J, Guo R (2010) Binding characteristics and molecular mechanism of interaction between ionic liquid and DNA. J Phys Chem B 114: 2033–2043. doi: 10.1021/jp9104757
[7]  Elder RM, Emrick T, Jayaraman A (2011) Understanding the effect of polylysine architecture on DNA binding using molecular dynamics simulations. Biomacromolecules 12: 3870–3879. doi: 10.1021/bm201113y
[8]  Chen AY, Liu LF (1994) DNA Topoisomerases: Essential Enzymes and Lethal Targets. Annu Rev Pharmacol Toxicol 34: 191–218. doi: 10.1146/annurev.pa.34.040194.001203
[9]  Pilch DS, Kirolos MA, Liu X, Plum GE, Breslauer KJ (1995) Berenil [1,3-bis(4′- amidinophenyl)triazene] Binding to DNA Duplexes and to a RNA Duplex: Evidence for Both Intercalative and Minor Groove Binding Properties. Biochemistry 34: 9962–9976. doi: 10.1021/bi00031a019
[10]  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242. doi: 10.1093/nar/28.1.235
[11]  Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, et al. (1996) Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273: 1109–1111. doi: 10.1126/science.273.5278.1109
[12]  Taki K, Fukushima T, Ise R, Horii I, Yoshida T (2013) Microarray analysis of 6-mercaptopurine-induced-toxicity-relate?dgenes and microRNAs in the rat placenta. J Toxicol Sci 38: 159–167. doi: 10.2131/jts.38.159
[13]  Kim HL, Kim HN, Lee EJ (2006) Gene Expression Profiling of 6-MP (6 mercaptopurine) in Liver. Genomics & Informatics 4: 16–22.
[14]  Kypr J, Kejnovská I, Renciuk D, Vorlícková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37: 1713–1725. doi: 10.1093/nar/gkp026
[15]  Sprecher CA, Baase WA, Johnson WC (1979) Conformation and circular dichroism of DNA. Biopolymers 18: 1009–1019. doi: 10.1002/bip.1979.360180418
[16]  Hillen W, Wells RD (1980) Circular dichroism studies of the B goes to A conformational transition in seven small DNA restriction fragments containing the Escherichia coli lactose control region. Nucleic Acids Res 8: 5427–5444. doi: 10.1093/nar/8.22.5427
[17]  Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: A Laboratory Manual. NY: Cold Spring Harbor Laboratory.
[18]  Chuan D, Li-hua D, Yu-xia W, Jun-fen L, Yan-li W (2003) Spectroscopy behavior of 6-Mercaptopurine, Azathiopurine, and 8-Azaguanine. Spectrochim Acta A Mol Biomol Spectrosc 59: 3131–7. doi: 10.1016/s1386-1425(03)00121-5
[19]  Nakayama T, Kimura T, Kodama M, Nagata C (1983) Generation of hydrogen peroxide and superoxide anion from active metabolites of naphthylamine and amino azo dyes: its possible role in carcinogenesis. Carcinogenesis 4: 765–769. doi: 10.1093/carcin/4.6.765
[20]  Pool-Zobel BL, Guigas C, Klein RG, Neudecker CH, Renner HW, et al. (1993) Assessment of genotoxic effects by lindane. Food and Chemical Toxicology 31: 271–283. doi: 10.1016/0278-6915(93)90077-c
[21]  Singh NP, McCoy MT, Tice RR, Schneider EL (1998) A simple technique for quantitation of low levels of DNA damage in individual cells. Experiment Cell Research 175: 184–191. doi: 10.1016/0014-4827(88)90265-0
[22]  Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, et al. (2000) Single cell gel/comet assay; guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis 35: 206–221. doi: 10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j
[23]  Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, et al. (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111: 3051–8. doi: 10.1021/ja00190a046
[24]  Rahban M, Divsalar A, Saboury AA, Golestani A (2010) Nanotoxicity and spectroscopy studies of silver nanoparticle: Calf thymus DNA and K562 as targets. J Phys Chem C 114: 5798–5803. doi: 10.1021/jp910656g
[25]  Chen QY, Li DH, Zhao Y, Yang HH, Zhu QZ et al. (1999) Interaction of a novel red-region fluorescent probe, Nile blue, with DNA and its application to nucleic acids assay. Analyst: 124, 901–6.
[26]  Kashanian S, Dolatabadi JEN (2010) In vitro studies on calf thymus DNA interaction and 2-tert-butyl-4-methylphenol food additive. Eur Food Res Technol 230: 821–825. doi: 10.1007/s00217-010-1226-6
[27]  Song YM, Kang JW, Zhou J, Wang ZH, Lu XQ, et al. (2000) Study on the fluorescence spectra and electrochemical behavior of ZnL2 and Morin with DNA. Spectrochim Acta A 56: 2491–7. doi: 10.1016/s1386-1425(00)00340-1
[28]  Liu HK, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44: 349–359. doi: 10.1021/ar100140e
[29]  Kakkar R, Garg R (2002) Suruchi (2002) Theoretical study of tautomeric structures and fluorescence spectra of Hoechst 33258. J Mol Struct THEOCHEM 579: 109–113. doi: 10.1016/s0166-1280(01)00721-7
[30]  Guan Y, Zhou W, Yao XH, Zhao MP, Li YZ (2006) Determination of nucleic acids based on the fluorescence quenching of Hoechst 33258 at pH 4.5. Anal Chim Acta 570: 21–28. doi: 10.1016/j.aca.2006.03.106
[31]  Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3: 18–30. doi: 10.1016/s0022-2836(61)80004-1
[32]  Kumar CV, Asuncion EH (1992) Sequence dependent energy transfer from DNA to a simple aromatic chromophore. J Chem Soc Chem Commun 6: 470–472. doi: 10.1039/c39920000470
[33]  Kumar CV, Turner RS, Asuncion EH (1993) Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J Photochem Photobiol A: Chem 74: 231–238. doi: 10.1016/1010-6030(93)80121-o
[34]  Lepecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. Mol Biol 27: 87–105. doi: 10.1016/0022-2836(67)90353-1
[35]  Bonincontro A, Falivene M, LaMesa C, Risuleo G, RuizPena M (2008) Dynamics of DNA adsorption on and release from SDS-DDAB cat-anionic vesicles: a multitechnique study. Langmuir 24: 1973–1978. doi: 10.1021/la701730h
[36]  Nejedly K, Chladkova J, Vorlickova M, Hrabcova I, Kypr J (2005) Mapping the B–A conformational transition along plasmid DNA. Nucl Acids Res 33: 1–8.
[37]  M Vorlícková (1995) Conformational transitions of alternating purine–pyrimidine DNAs in perchlorate ethanol solutions. Biophys J 69: 2033–2043. doi: 10.1016/s0006-3495(95)80073-1
[38]  Kypr J, Vorlickova M (2002) Circular dichroism spectroscopy reveals invariant conformation of guanine runs in DNA. Biopolymers (Biospectroscopy) 67: 275–277. doi: 10.1002/bip.10112
[39]  Uma MP, Palaniandavar MJ (2004) DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines–effect of hydrogen-bonding on DNA-binding affinity. Inorg Biochem 98: 219–230. doi: 10.1016/j.jinorgbio.2003.09.003
[40]  Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12: 89–110. doi: 10.1002/bip.1973.360120109
[41]  Jain SS, Matjaz A, Hud NV (2003) Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne-driven duplex disproportionation. Nucleic Acids Res 31: 4608–4614. doi: 10.1093/nar/gkg648
[42]  Mergny JL, Duval-Valentin G, Nguyen CH, Perrouault L, Faucon B, et al. (1992) Triple helix-specific ligands. Science 256: 1681–1684. doi: 10.1126/science.256.5064.1681
[43]  Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry 32: 2573–2584. doi: 10.1021/bi00061a015
[44]  Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither delta-nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31: 9319–9324. doi: 10.1021/bi00154a001
[45]  Tsilikia P, Perdihb F, Turelb I, Psomasa G (2013) Structure, DNA and albumin-binding of the manganese(II) complex with the non-steroidal antiinflammatory drug niflumic acid. Polyhedron 53: 215–222. doi: 10.1016/j.poly.2013.01.049
[46]  Rafique B, Khalid AM, Akhtar K, Jabbar A (2013) Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosens Bioelectron 44: 21–26. doi: 10.1016/j.bios.2012.12.028
[47]  Wang Y, Lin GW, Hong J, Li L, Lu T, et al. (2009) Synthesis, structures and DNA binding of ternary transition metal complexes M (II)L with the 2,2′-bipyridylamine (L = p-aminobenzenecarboxylic acid, M = Ni, Cu and Zn). Inorg Chim Acta 362: 377–384. doi: 10.1016/j.ica.2008.04.017
[48]  Onoue S, Seto Y, Gandy G, Yamada S (2009) Drug-induced phototoxicity; an early in vitro identification of phototoxic potential of new drug entities in drug discovery and development. Curr Drug Saf 4: 123–136. doi: 10.2174/157488609788173044

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133