全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Uncoupling of Bacterial and Terrigenous Dissolved Organic Matter Dynamics in Decomposition Experiments

DOI: 10.1371/journal.pone.0093945

Full-Text   Cite this paper   Add to My Lib

Abstract:

The biodegradability of terrigenous dissolved organic matter (tDOM) exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC) consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4–16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities cannot efficiently utilize tDOM and that in subarctic estuaries other factors are responsible for the removal of imported tDOM.

References

[1]  Cauwet G, Deliat G, Krastev A, Shtereva G, Becquevort S, et al. (2002) Seasonal DOC accumulation in the Black Sea: a regional explanation for a general mechanism. Mar Chem 79: 193–205. doi: 10.1016/s0304-4203(02)00064-6
[2]  Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27: 319–361. doi: 10.1016/s0146-6380(97)00056-9
[3]  Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282: l–450. doi: 10.2475/ajs.282.4.401
[4]  Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409: 497–500. doi: 10.1038/35054034
[5]  Freeman C, Evans C, Monteith D, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412: 785. doi: 10.1038/35090628
[6]  McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, et al. (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monographs 79: 523–555. doi: 10.1890/08-2025.1
[7]  R?is?nen J, Hansson U, Ullerstig A, D?scher R, Graham L, et al. (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dynam 22: 13–31. doi: 10.1007/s00382-003-0365-x
[8]  Yamamotoa-Kawai M, McLaughlin F, Carmack E, Nishino S, Shimada K, et al. (2009) Surface freshening of the Canada Basin, 2003–2007: River runoff versus sea ice meltwater. J Geophys Res 114: C00A05. doi: 10.1029/2008jc005000
[9]  Aagaard K, Carmack E (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94: 14485–14498. doi: 10.1029/jc094ic10p14485
[10]  Anderson LG, Olsson K, Chierici M (1998) A carbon budget for the Arctic Ocean. Global Biogeochem Cycles 12: 455–465. doi: 10.1029/98gb01372
[11]  Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386: 480–482. doi: 10.1038/386480a0
[12]  Amon RMW, Fitznar HP, Benner R (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46: 287–297. doi: 10.4319/lo.2001.46.2.0287
[13]  Dittmar T, Fitznar HP, Kattner G (2001) Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochim Cosmochim Acta 65: 4103–4114. doi: 10.1016/s0016-7037(01)00688-3
[14]  K?hler H, Meon B, Gordeev V, Spitzy A, Amon R (2003) Dissolved organic matter (DOM) in the estuaries of Ob and Yenisei and the adjacent Kara Sea, Russia. Proceedings in Marine Science, Elsevier (Amsterdam), Vol 6: 281–310.
[15]  Stein R, MacDonald R (2004) Organic carbon budget: Arctic Ocean vs. global ocean. The organic carbon cycle in the Arctic Ocean Springer, Berlin: 315–322.
[16]  Fellman JB, Spencer RG, Hernes PJ, Edwards RT, D’Amore DV, et al. (2010) The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems. Mar Chem 121: 112–122. doi: 10.1016/j.marchem.2010.03.009
[17]  Letscher RT, Hansell DA, Kadko D (2011) Rapid removal of terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic Ocean. Mar Chem 123: 78–87. doi: 10.1016/j.marchem.2010.10.002
[18]  Cooper LW, Benner R, McClelland JW, Peterson BJ, Holmes RM, et al. (2005) Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. J Geophys Res 110: G02013. doi: 10.1029/2005jg000031
[19]  Kujawinski EB (2011) The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci 3: 567–599. doi: 10.1146/annurev-marine-120308-081003
[20]  Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66: 1692–1697. doi: 10.1128/aem.66.4.1692-1697.2000
[21]  Elifantz H, Dittel AI, Cottrell MT, Kirchman DL (2007) Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 50: 39–49. doi: 10.3354/ame01145
[22]  Gómez-Consarnau L, Lindh MV, Gasol JM, Pinhassi J (2012) Structuring of bacterioplankton communities by specific dissolved organic carbon compounds. Environ Microbiol 14: 2361–2378. doi: 10.1111/j.1462-2920.2012.02804.x
[23]  Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451: 708–711. doi: 10.1038/nature06513
[24]  Nelson CE, Carlson CA (2012) Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environ Microbiol 14: 1500–1516. doi: 10.1111/j.1462-2920.2012.02738.x
[25]  Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255: 1561. doi: 10.1126/science.255.5051.1561
[26]  Judd KE, Crump BC, Kling GW (2006) Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87: 2068–2079. doi: 10.1890/0012-9658(2006)87[2068:vidomc]2.0.co;2
[27]  Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc Natl Acad Sci USA 108: 19473–19481. doi: 10.1073/pnas.1017982108
[28]  Humborg C, Smedberg E, Blomqvist S, M?rth C-M, Brink J, et al. (2004) Nutrient variations in boreal and subarctic Swedish Rivers: Landscape control of land-sea fluxes. Limnol Oceanogr 49: 1871–1883. doi: 10.4319/lo.2004.49.5.1871
[29]  Ingri J, Torssander P, Andersson P, M?rth C-M, Kusakabe M (1997) Hydrogeochemistry of sulfur isotopes in the Kalix River catchment, northern Sweden. Appl Geochem 12: 483–496. doi: 10.1016/s0883-2927(97)00026-7
[30]  Smedberg E, Morth C, Swaney DP, Humborg C (2006) Modeling hydrology and silicon-carbon interactions in taiga and tundra biomes from a landscape perspective: Implications for global warming feedbacks. Global Biogeochem Cycles 20: p. GB2014.
[31]  Ingri J, Widerlund A, Land M, Gustafsson ?, Andersson P, et al. (2000) Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles. Chem Geol 166: 23–45. doi: 10.1016/s0009-2541(99)00178-3
[32]  Ingri J, Widerlund A, Land M (2005) Geochemistry of major elements in a pristine boreal river system; hydrological compartments and flow paths. Aquat Geochem 11: 57–88. doi: 10.1007/s10498-004-2248-0
[33]  Strady E, Pohl C, Yakushev EV, Krüger S, Hennings U (2008) PUMP–CTD-System for trace metal sampling with a high vertical resolution. A test in the Gotland Basin, Baltic Sea. Chemosphere 70: 1309–1319. doi: 10.1016/j.chemosphere.2007.07.051
[34]  Meyer JL, Edwards RT, Risley R (1987) Bacterial growth on dissolved organic carbon from a blackwater river. Microb Ecol 13: 13–29. doi: 10.1007/bf02014960
[35]  Brockmeyer B, Spitzy A (2013) Evaluation of a disc tube methodology for nano-and ultrafiltration of natural dissolved organic matter (DOM). Int. J. Org. Chem. 3: 17–25. doi: 10.4236/ijoc.2013.31a002
[36]  Wasmund N, Tuimala J, Suikkanen S, Vandepitte L, Kraberg A (2011) Long-term trends in phytoplankton composition in the western and central Baltic Sea. J Mar Syst 87: 145–159. doi: 10.1016/j.jmarsys.2011.03.010
[37]  Grasshoff K, Erhardt M, Kremling K (1983) Methods of seawater analysis. Weinheim, Germany: Verlag Chemie.
[38]  Rohde K-H, Nehring D (1979) Ausgew?hlte Methoden zur Bestimmung von Inhaltsstoffen im Meer-und Brackwasser: Nationalkomitee für Geod?sie u. Geophysik bei d. Akad. d. Wiss. d. DDR.
[39]  Dittmar T, Koch B, Hertkorn N, Kattner G (2008) A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods 6: 230–235. doi: 10.4319/lom.2008.6.230
[40]  Koch J, Günther D (2007) Femtosecond laser ablation inductively coupled plasma mass spectrometry: achievements and remaining problems. Anal Bioanal Chem 387: 149–153. doi: 10.1007/s00216-006-0918-z
[41]  Fuhrman J, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66: 109–120. doi: 10.1007/bf00397184
[42]  Riemann B, Bjornsen PK, Newell S, Fallon R (1987) Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H] thymidine. Limnol Oceanogr: 471–476.
[43]  Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64: 3352–3358.
[44]  Robinson C, Archer SD, Williams PlB (1999) Microbial dynamics in coastal waters of East Antarctica: plankton production and respiration. Mar Ecol Prog Ser 180: 23–36. doi: 10.3354/meps180023
[45]  Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagstr?m ? (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65: 4475–4483.
[46]  Porter K, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25.
[47]  Weinbauer MG, Fritz I, Wenderoth DF, H?fle MG (2002) Simultaneous extraction from bacterioplankton of total RNA and DNA suitable for quantitative structure and function analyses. Appl Environ Microbiol 68: 1082–1087. doi: 10.1128/aem.68.3.1082-1087.2002
[48]  Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, et al. (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5: 1571–1579. doi: 10.1038/ismej.2011.41
[49]  Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2011) Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nature Methods 9: 425–426. doi: 10.1038/nmeth.1990
[50]  Cole J, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145. doi: 10.1093/nar/gkn879
[51]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. doi: 10.1093/nar/25.17.3389
[52]  Zhou J, Wu L, Deng Y, Zhi X, Jiang Y-H, et al. (2011) Reproducibility and quantitation of amplicon sequencing-based detection. ISME J 5: 1303–1313. doi: 10.1038/ismej.2011.11
[53]  Wright ES, Yilmaz LS, Noguera DR (2011) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78: 717–725. doi: 10.1128/aem.06516-11
[54]  Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196. doi: 10.1093/nar/gkm864
[55]  Ludwig W, Strunk O, Westram R, Richter L, Meier H, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371. doi: 10.1093/nar/gkh293
[56]  Hammer ?, Harper D, Ryan P (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 6.
[57]  Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62: 142–160. doi: 10.1111/j.1574-6941.2007.00375.x
[58]  Deutsch B, Alling V, Humborg C, Korth F, M?rth C (2012) Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem. Biogeosciences 9: 4465–4475. doi: 10.5194/bg-9-4465-2012
[59]  Eckert EM, Salcher MM, Posch T, Eugster B, Pernthaler J (2012) Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol 14: 794–806. doi: 10.1111/j.1462-2920.2011.02639.x
[60]  Mopper K, Stubbins A, Ritchie JD, Bialk HM, Hatcher PG (2007) Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem Rev 107: 419–442. doi: 10.1021/cr050359b
[61]  Kujawinski EB, Farrington JW, Moffett JW (2002) Evidence for grazing-mediated production of dissolved surface - active material by marine protists. Mar Chem 77: 133–142. doi: 10.1016/s0304-4203(01)00082-2
[62]  Sholkovitz E (1976) Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim Cosmochim Acta 40: 831–845. doi: 10.1016/0016-7037(76)90035-1
[63]  Amon RMW, Meon B (2004) The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system. Mar Chem 92: 311–330. doi: 10.1016/j.marchem.2004.06.034
[64]  Lobbes JM, Fitznar HP, Kattner G (2000) Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim Cosmochim Acta 64: 2973–2983. doi: 10.1016/s0016-7037(00)00409-9
[65]  Alling V, Humborg C, M?rth C-M, Rahm L, Pollehne F (2008) Tracing terrestrial organic matter by delta S-34 and delta C-13 signatures in a subarctic estuary. Limnol Oceanogr 53: 2594–2602. doi: 10.4319/lo.2008.53.6.2594
[66]  van Dongen BE, Zencak Z, Gustafsson ? (2008) Differential transport and degradation of bulk organic carbon and specific terrestrial biomarkers in the surface waters of a sub-arctic brackish bay mixing zone. Mar Chem 112: 203–214. doi: 10.1016/j.marchem.2008.08.002
[67]  Wikner J, Cuadros R, Jansson M (1999) Differences in consumption of allochthonous DOC under limnic and estuarine conditions in a watershed. Aquat Microb Ecol 17: 289–299. doi: 10.3354/ame017289
[68]  Moran MA, Sheldon WM, Sheldon JE (1999) Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States. Estuaries 22: 55–64. doi: 10.2307/1352927
[69]  Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42: 1307–1316. doi: 10.4319/lo.1997.42.6.1307
[70]  Giudice AL, Casella P, Caruso C, Mangano S, Bruni V, et al. (2010) Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biol 33: 929–943. doi: 10.1007/s00300-010-0770-7
[71]  Oh K-H, Lee S-Y, Lee M-H, Oh T-K, Yoon J-H (2011) Paraperlucidibaca baekdonensis gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61: 1382–1385. doi: 10.1099/ijs.0.023994-0
[72]  Brown JM, Felice NR, Scalfone NB, Hewson I (2012) Influence of habitat confluence on aquatic microbial assemblages in experimental mesocosms. Aquat Microb Ecol 66: 33. doi: 10.3354/ame01550
[73]  Langenheder S, Kisand V, Wikner J, Tranvik LJ (2003) Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiol Ecol 45: 189–202. doi: 10.1016/s0168-6496(03)00149-1
[74]  Moran MA, Sheldon WM Jr, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45: 1254–1264. doi: 10.4319/lo.2000.45.6.1254
[75]  Baltar F, Lindh MV, Parparov A, Berman T, Pinhassi J (2012) Prokaryotic community structure and respiration during long-term incubations. MicrobiologyOpen 1: 214–224. doi: 10.1002/mbo3.25
[76]  Fuchs BM, Zubkov MV, Sahm K, Burkill PH, Amann R (2000) Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol 2: 191–201. doi: 10.1046/j.1462-2920.2000.00092.x
[77]  Massana R, Pedrós-Alió C, Casamayor EO, Gasol JM (2001) Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters. Limnol Oceanogr 46: 1181–1188. doi: 10.4319/lo.2001.46.5.1181
[78]  Jürgens K, Gasol JM, Vaqué D (2000) Bacteria - flagellate coupling in microcosm experiments in the Central Atlantic Ocean. J Exp Mar Biol Ecol 245: 127–147. doi: 10.1016/s0022-0981(99)00156-2
[79]  Weber F, del Campo J, Wylezich C, Massana R, Jürgens K (2012) Unveiling trophic functions of uncultured protist taxa by incubation experiments in the brackish Baltic Sea. PloS one 7: e41970. doi: 10.1371/journal.pone.0041970
[80]  Herlemann DP, Lundin D, Labrenz M, Jürgens K, Zheng Z, et al. (2013) Metagenomic de novo assembly of an aquatic representative of the verrucomicrobial class Spartobacteria. mBio 4.
[81]  Pinhassi J, Berman T (2003) Differential growth response of colony-forming Alpha- and Gamma-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69: 199–211. doi: 10.1128/aem.69.1.199-211.2003
[82]  Sch?fer H, Servais P, Muyzer G (2000) Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch Microbiol 173: 138–145. doi: 10.1007/s002039900121
[83]  Sj?stedt J, Koch-Schmidt P, Pontarp M, Canb?ck B, Tunlid A, et al. (2012) Recruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance. Appl Environ Microbiol 78: 1361–1369. doi: 10.1128/aem.05542-11
[84]  Dinasquet J, Kragh T, Schr?ter ML, S?ndergaard M, Riemann L (2013) Functional and compositional succession of bacterioplankton in response to a gradient in bioavailable dissolved organic carbon. Environ Microbiol.
[85]  Landa M, Cottrell MT, Kirchman DL, Blain S, Obernosterer I (2013) Changes in bacterial diversity in response to dissolved organic matter supply in a continuous culture experiment. Aquat Microb Ecol 69: 157–168. doi: 10.3354/ame01632
[86]  Massana R, Jürgens K (2003) Composition and population dynamics of planktonic bacteria and bacterivorous flagellates in seawater chemostat cultures. Aquat Microb Ecol 32: 11–22. doi: 10.3354/ame032011
[87]  Ray JL, T?pper B, An S, Silyakova A, Spindelb?ck J, et al. (2012) Effect of increased pCO2 on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms. FEMS Microbiol Ecol 82: 713–723. doi: 10.1111/j.1574-6941.2012.01443.x
[88]  Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, et al. (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330: 204–208. doi: 10.1126/science.1195979
[89]  Jürgens K, Güde H (1994) The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser 112: 169–188. doi: 10.3354/meps112169
[90]  Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45: 1320–1328. doi: 10.4319/lo.2000.45.6.1320
[91]  T?pper B, Thingstad TF, Sandaa RA (2013) Effects of differences in organic supply on bacterial diversity subject to viral lysis. FEMS Microbiol Ecol 83: 202–213. doi: 10.1111/j.1574-6941.2012.01463.x
[92]  Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, et al. (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8: 593–599. doi: 10.1038/nrmicro2386

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133