全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Amphetamine Sensitization Alters Reward Processing in the Human Striatum and Amygdala

DOI: 10.1371/journal.pone.0093955

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

References

[1]  Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5: 48–58. doi: 10.1002/syn.890050104
[2]  Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16: 223–244. doi: 10.1016/0165-0173(91)90007-u
[3]  Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396: 157–198. doi: 10.1016/0165-0173(86)90002-0
[4]  Kalivas PW, Richardson-Carlson R, Van Orden G (1986) Cross-sensitization between foot shock stress and enkephalin-induced motor activity. Biol Psychiatry 21: 939–950. doi: 10.1016/0006-3223(86)90268-4
[5]  Robinson TE, Becker JB, Young EA, Akil H, Castaneda E (1987) The effects of footshock stress on regional brain dopamine metabolism and pituitary beta-endorphin release in rats previously sensitized to amphetamine. Neuropharmacology 26: 679–691. doi: 10.1016/0028-3908(87)90228-0
[6]  Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13: 266–275.
[7]  Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J Neurosci 13: 276–284.
[8]  Antelman SM, Eichler AJ, Black CA, Kocan D (1980) Interchangeability of stress and amphetamine in sensitization. Science 207: 329–331. doi: 10.1126/science.7188649
[9]  Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31: 371–384. doi: 10.1016/s0165-0173(99)00054-5
[10]  Featherstone RE, Kapur S, Fletcher PJ (2007) The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31: 1556–1571. doi: 10.1016/j.pnpbp.2007.08.025
[11]  Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18: 247–291. doi: 10.1016/0165-0173(93)90013-p
[12]  O’Daly OG, Guillin O, Tsapakis EM, Martinez D, Shergill SS, et al. (2005) Schizophrenia and substance abuse co-morbidity: A role for dopamine sensitization? Journal of Dual Diagnosis 1: 11–40. doi: 10.1300/j374v01n02_03
[13]  Angrist BM, Gershon S (1970) The phenomenology of experimentally induced amphetamine psychosis–preliminary observations. Biol Psychiatry 2: 95–107.
[14]  Zack M, Poulos CX (2009) Parallel roles for dopamine in pathological gambling and psychostimulant addiction. Curr Drug Abuse Rev 2: 11–25. doi: 10.2174/1874473710902010011
[15]  Schmidt WJ, Beninger RJ (2006) Behavioural sensitization in addiction, schizophrenia, Parkinson’s disease and dyskinesia. Neurotox Res 10: 161–166. doi: 10.1007/bf03033244
[16]  Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46: 56–72. doi: 10.1016/s0006-3223(99)00067-0
[17]  Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, et al. (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93: 9235–9240. doi: 10.1073/pnas.93.17.9235
[18]  Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, et al. (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94: 2569–2574. doi: 10.1073/pnas.94.6.2569
[19]  Evans AH, Pavese N, Lawrence AD, Tai YF, Appel S, et al. (2006) Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 59: 852–858. doi: 10.1002/ana.20822
[20]  Steeves TD, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, et al. (2009) Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 132: 1376–1385. doi: 10.1093/brain/awp054
[21]  Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 27: 827–839. doi: 10.1016/j.neubiorev.2003.11.001
[22]  De Vries TJ, Schoffelmeer AN, Binnekade R, Mulder AH, Vanderschuren LJ (1998) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur J Neurosci 10: 3565–3571. doi: 10.1046/j.1460-9568.1998.00368.x
[23]  Piazza PV, Deminiere JM, le Moal M, Simon H (1990) Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res 514: 22–26. doi: 10.1016/0006-8993(90)90431-a
[24]  Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, et al. (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386: 830–833. doi: 10.1038/386830a0
[25]  Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, et al. (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164: 622–629. doi: 10.1176/appi.ajp.164.4.622
[26]  Malison RT, Mechanic KY, Klummp H, Baldwin RM, Kosten TR, et al. (1999) Reduced amphetamine-stimulated dopamine release in cocaine addicts as measured by [I-123]IBZM SPECT. Journal of Nuclear Medicine 40: 110p–110p.
[27]  Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, et al. (2008) Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. Neuroimage 39: 1266–1273. doi: 10.1016/j.neuroimage.2007.09.059
[28]  Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, et al. (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26: 6583–6588. doi: 10.1523/jneurosci.1544-06.2006
[29]  Wise RA (1980) Action of drugs of abuse on brain reward systems. Pharmacol Biochem Behav 13 Suppl 1213–223. doi: 10.1016/s0091-3057(80)80033-5
[30]  Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13: 900–913.
[31]  Schultz W, Apicella P, Ljungberg T, Romo R, Scarnati E (1993) Reward-related activity in the monkey striatum and substantia nigra. Prog Brain Res 99: 227–235. doi: 10.1016/s0079-6123(08)61349-7
[32]  Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16: 1936–1947.
[33]  Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599. doi: 10.1126/science.275.5306.1593
[34]  Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27.
[35]  Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, et al. (2008) Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 13: 239, 267–276.
[36]  Murray GK, Corlett PR, Fletcher PC (2010) The neural underpinnings of associative learning in health and psychosis: how can performance be preserved when brain responses are abnormal? Schizophr Bull 36: 465–471. doi: 10.1093/schbul/sbq005
[37]  Jensen J, Willeit M, Zipursky RB, Savina I, Smith AJ, et al. (2008) The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33: 473–479. doi: 10.1038/sj.npp.1301437
[38]  Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, et al. (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29: 409–416. doi: 10.1016/j.neuroimage.2005.07.051
[39]  Morris RW, Vercammen A, Lenroot R, Moore L, Langton JM, et al. (2011) Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia. Mol Psychiatry.
[40]  Waltz JA, Schweitzer JB, Ross TJ, Kurup PK, Salmeron BJ, et al. (2010) Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology 35: 2427–2439. doi: 10.1038/npp.2010.126
[41]  Ziauddeen H, Murray GK (2010) The relevance of reward pathways for schizophrenia. Curr Opin Psychiatry 23: 91–96. doi: 10.1097/yco.0b013e328336661b
[42]  Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, et al. (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19: 1085–1094. doi: 10.1016/s1053-8119(03)00113-7
[43]  Goldstein RZ, Alia-Klein N, Tomasi D, Zhang L, Cottone LA, et al. (2007) Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 164: 43–51. doi: 10.1176/appi.ajp.164.1.43
[44]  Goldstein RZ, Tomasi D, Alia-Klein N, Cottone LA, Zhang L, et al. (2007) Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug Alcohol Depend 87: 233–240. doi: 10.1016/j.drugalcdep.2006.08.022
[45]  Verdejo-Garcia A, Bechara A, Recknor EC, Perez-Garcia M (2006) Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive and emotional correlates of addiction. J Int Neuropsychol Soc 12: 405–415. doi: 10.1017/s1355617706060486
[46]  van Eimeren T, Ballanger B, Pellecchia G, Miyasaki JM, Lang AE, et al. (2009) Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology 34: 2758–2766. doi: 10.1038/npp.2009.124
[47]  Redish AD, Jensen S, Johnson A, Kurth-Nelson Z (2007) Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychol Rev 114: 784–805. doi: 10.1037/0033-295x.114.3.784
[48]  Lapish CC, Seamans JK, Chandler LJ (2006) Glutamate-dopamine cotransmission and reward processing in addiction. Alcohol Clin Exp Res 30: 1451–1465. doi: 10.1111/j.1530-0277.2006.00176.x
[49]  Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363: 3137–3146. doi: 10.1098/rstb.2008.0093
[50]  Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96: 103–114. doi: 10.1046/j.1360-0443.2001.9611038.x
[51]  Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160: 13–23. doi: 10.1176/appi.ajp.160.1.13
[52]  Schoenbaum G, Setlow B (2005) Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal-amygdalar function. Cereb Cortex 15: 1162–1169. doi: 10.1093/cercor/bhh216
[53]  Stalnaker TA, Roesch MR, Franz TM, Burke KA, Schoenbaum G (2006) Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. Eur J Neurosci 24: 2643–2653. doi: 10.1111/j.1460-9568.2006.05128.x
[54]  Stalnaker TA, Roesch MR, Franz TM, Calu DJ, Singh T, et al. (2007) Cocaine-induced decision-making deficits are mediated by miscoding in basolateral amygdala. Nat Neurosci 10: 949–951. doi: 10.1038/nn1931
[55]  Roesch MR, Takahashi Y, Gugsa N, Bissonette GB, Schoenbaum G (2007) Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J Neurosci 27: 245–250. doi: 10.1523/jneurosci.4080-06.2007
[56]  Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19: 1997–2002. doi: 10.1111/j.1460-9568.2004.03274.x
[57]  Takahashi Y, Roesch MR, Stalnaker TA, Schoenbaum G (2007) Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Front Integr Neurosci 1: 11. doi: 10.3389/neuro.07.011.2007
[58]  Homayoun H, Moghaddam B (2006) Progression of cellular adaptations in medial prefrontal and orbitofrontal cortex in response to repeated amphetamine. J Neurosci 26: 8025–8039. doi: 10.1523/jneurosci.0842-06.2006
[59]  Castner SA, al-Tikriti MS, Baldwin RM, Seibyl JP, Innis RB, et al. (2000) Behavioral changes and [123I]IBZM equilibrium SPECT measurement of amphetamine-induced dopamine release in rhesus monkeys exposed to subchronic amphetamine. Neuropsychopharmacology 22: 4–13. doi: 10.1016/s0893-133x(99)00080-9
[60]  Castner SA, Goldman-Rakic PS (1999) Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20: 10–28. doi: 10.1016/s0893-133x(98)00050-5
[61]  Castner SA, Goldman-Rakic PS (2003) Amphetamine sensitization of hallucinatory-like behaviors is dependent on prefrontal cortex in nonhuman primates. Biol Psychiatry 54: 105–110. doi: 10.1016/s0006-3223(03)00292-0
[62]  Strakowski SM, Sax KW (1998) Progressive behavioral response to repeated d-amphetamine challenge: further evidence for sensitization in humans. Biol Psychiatry 44: 1171–1177. doi: 10.1016/s0006-3223(97)00454-x
[63]  Strakowski SM, Sax KW, Rosenberg HL, DelBello MP, Adler CM (2001) Human response to repeated low-dose d-amphetamine: evidence for behavioral enhancement and tolerance. Neuropsychopharmacology 25: 548–554. doi: 10.1016/s0893-133x(01)00253-6
[64]  Strakowski SM, Sax KW, Setters MJ, Keck PE Jr (1996) Enhanced response to repeated d-amphetamine challenge: evidence for behavioral sensitization in humans. Biol Psychiatry 40: 872–880. doi: 10.1016/0006-3223(95)00497-1
[65]  Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, et al. (2006) Modeling Sensitization to Stimulants in Humans: An [11C]Raclopride/Positron Emission Tomography Study in Healthy Men. Arch Gen Psychiatry 63: 1386–1395. doi: 10.1001/archpsyc.63.12.1386
[66]  Boileau I, Dagher A, Leyton M, Welfeld K, Booij L, et al. (2007) Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. J Neurosci 27: 3998–4003. doi: 10.1523/jneurosci.4370-06.2007
[67]  Booij L, Welfeld K, Leyton M, Dagher A, Boileau I, et al. (2009) Cross-Sensitization Between Stimulants and Stress in Humans: Behavioral and Neurochemical Correlates. 50th Annual conference of Scandinavian College of Neuropsychopharmacology (SCNP). Copenhagen: Scandinavian College of Neuropsychopharmacology (SCNP).
[68]  Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P (2001) Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30: 619–639. doi: 10.1016/s0896-6273(01)00303-8
[69]  Ernst M, Nelson EE, McClure EB, Monk CS, Munson S, et al. (2004) Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42: 1585–1597. doi: 10.1016/j.neuropsychologia.2004.05.011
[70]  O’Daly OG, Joyce D, Stephan KE, Murray RM, Shergill SS (2011) Functional magnetic resonance imaging investigation of the amphetamine sensitization model of schizophrenia in healthy male volunteers. Arch Gen Psychiatry 68: 545–554. doi: 10.1001/archgenpsychiatry.2011.3
[71]  O’Daly OG, Joyce D, Tracy DK, Stephan KE, Murray RM, et al. (2014) Amphetamine Sensitisation and Memory in Healthy Human Volunteers; an fMRI Study. J Psychopharmacol Accepted for Publication Jan. 2014.
[72]  Haertzen CA, Hill HE (1963) Assessing Subjective Effects of Drugs: an Index of Carelessness and Confusion for Use with the Addiction Research Center Inventory (Arci). J Clin Psychol 19: 407–412. doi: 10.1002/1097-4679(196310)19:4<407::aid-jclp2270190410>3.0.co;2-n
[73]  Haertzen CA, Hill HE, Belleville RE (1963) Development of the Addiction Research Center Inventory (Arci): Selection of Items That Are Sensitive to the Effects of Various Drugs. Psychopharmacologia 70: 155–166. doi: 10.1007/bf02584088
[74]  Haertzen CA, Hickey JE (1987) Addiction Research Center Inventory (ARCI): Measurement of euphoria and other drug effects. In: Bozarth MA, editor. Methods of assessing the reinforcing properties of abused drugs. New York: Springer-Verlag. pp. 489–524.
[75]  McNair DM, Lorr M, Droppleman LF (1992) EdITS manual for the Profile of Mood States. San Diego: CA: Educational and Industrial Testing Service.
[76]  Kumari V, Mulligan OF, Cotter PA, Poon L, Toone BK, et al. (1998) Effects of single oral administrations of haloperidol and d-amphetamine on prepulse inhibition of the acoustic startle reflex in healthy male volunteers. Behav Pharmacol 9: 567–576. doi: 10.1097/00008877-199811000-00012
[77]  Andersson JL, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling geometric deformations in EPI time series. Neuroimage 13: 903–919. doi: 10.1006/nimg.2001.0746
[78]  Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, et al. (2002) Image distortion correction in fMRI: A quantitative evaluation. Neuroimage 16: 217–240. doi: 10.1006/nimg.2001.1054
[79]  Friston KJ, Frith CD, Turner R, Frackowiak RS (1995) Characterizing evoked hemodynamics with fMRI. Neuroimage 2: 157–165. doi: 10.1006/nimg.1995.1018
[80]  Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, et al. (1995) Analysis of fMRI time-series revisited. Neuroimage 2: 45–53. doi: 10.1006/nimg.1995.1007
[81]  Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, et al. (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7: 30–40. doi: 10.1006/nimg.1997.0306
[82]  Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12: 535–540. doi: 10.1038/nn.2303
[83]  Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, et al. (2001) Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 21: 1034–1057. doi: 10.1097/00004647-200109000-00002
[84]  Wittmann BC, Schott BH, Guderian S, Frey JU, Heinze HJ, et al. (2005) Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron 45: 459–467. doi: 10.1016/j.neuron.2005.01.010
[85]  Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15: 273–289. doi: 10.1006/nimg.2001.0978
[86]  Ferrario CR, Gorny G, Crombag HS, Li Y, Kolb B, et al. (2005) Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry 58: 751–759. doi: 10.1016/j.biopsych.2005.04.046
[87]  Nordquist RE, Voorn P, de Mooij-van Malsen JG, Joosten RN, Pennartz CM, et al. (2007) Augmented reinforcer value and accelerated habit formation after repeated amphetamine treatment. Eur Neuropsychopharmacol 17: 532–540. doi: 10.1016/j.euroneuro.2006.12.005
[88]  Jonkman S (2006) Sensitization facilitates habit formation: implications for addiction. J Neurosci 26: 7319–7320. doi: 10.1523/jneurosci.2236-06.2006
[89]  Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26: 3805–3812. doi: 10.1523/jneurosci.4305-05.2006
[90]  Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20: 2369–2382.
[91]  Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27: 468–474. doi: 10.1016/j.tins.2004.06.006
[92]  Kiyatkin EA, Rebec GV (1996) Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol 75: 142–153.
[93]  Knutson B, Bjork JM, Fong GW, Hommer D, Mattay VS, et al. (2004) Amphetamine modulates human incentive processing. Neuron 43: 261–269. doi: 10.1016/j.neuron.2004.06.030
[94]  Everitt BJ, Robbins TW (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 37: 1946–1954. doi: 10.1016/j.neubiorev.2013.02.010
[95]  Belin D, Belin-Rauscent A, Murray JE, Everitt BJ (2013) Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol 23: 564–572. doi: 10.1016/j.conb.2013.01.025
[96]  Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57: 432–441. doi: 10.1016/j.neuron.2007.12.019
[97]  Robbins TW, Everitt BJ (2007) A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology (Berl) 191: 433–437. doi: 10.1007/s00213-006-0528-7
[98]  See RE, Fuchs RA, Ledford CC, McLaughlin J (2003) Drug addiction, relapse, and the amygdala. Ann N Y Acad Sci 985: 294–307. doi: 10.1111/j.1749-6632.2003.tb07089.x
[99]  Kilts CD (2001) Imaging the roles of the amygdala in drug addiction. Psychopharmacol Bull 35: 84–94.
[100]  Anticevic A, Van Snellenberg JX, Cohen RE, Repovs G, Dowd EC, et al. (2010) Amygdala Recruitment in Schizophrenia in Response to Aversive Emotional Material: A Meta-analysis of Neuroimaging Studies. Schizophr Bull.
[101]  Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3: 563–573. doi: 10.1038/nrn875
[102]  Kosson DS, Budhani S, Nakic M, Chen G, Saad ZS, et al. (2006) The role of the amygdala and rostral anterior cingulate in encoding expected outcomes during learning. Neuroimage 29: 1161–1172. doi: 10.1016/j.neuroimage.2005.07.060
[103]  Ernst M, Nelson EE, Jazbec S, McClure EB, Monk CS, et al. (2005) Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. Neuroimage 25: 1279–1291. doi: 10.1016/j.neuroimage.2004.12.038
[104]  Rosenkranz JA, Grace AA (1999) Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 19: 11027–11039.
[105]  Balleine BW, Killcross S (2006) Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci 29: 272–279. doi: 10.1016/j.tins.2006.03.002
[106]  Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, et al. (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475: 377–380. doi: 10.1038/nature10194
[107]  Di Ciano P, Everitt BJ (2004) Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci 24: 7167–7173. doi: 10.1523/jneurosci.1581-04.2004
[108]  Tse MT, Cantor A, Floresco SB (2011) Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning. J Neurosci 31: 11282–11294. doi: 10.1523/jneurosci.1810-11.2011
[109]  Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35: 217–238. doi: 10.1038/npp.2009.110
[110]  Knutson B, Gibbs SE (2007) Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology (Berl) 191: 813–822. doi: 10.1007/s00213-006-0686-7
[111]  Young IR, Cox IJ, Bryant DJ, Bydder GM (1988) The benefits of increasing spatial resolution as a means of reducing artifacts due to field inhomogeneities. Magn Reson Imaging 6: 585–590. doi: 10.1016/0730-725x(88)90133-6
[112]  Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172: 687–722. doi: 10.1002/cne.901720408
[113]  McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44: 1–14. doi: 10.1016/0306-4522(91)90247-l
[114]  Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, et al. (2006) A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci U S A 103: 4552–4557. doi: 10.1073/pnas.0504789103
[115]  Brotons O, O’Daly OG, Guindalini C, Howard M, Bubb J, et al. (2010) Modulation of orbitofrontal response to amphetamine by a functional variant of DAT1 and in vitro confirmation. Mol Psychiatry.
[116]  Chambers RA, Taylor JR (2004) Animal modeling dual diagnosis schizophrenia: sensitization to cocaine in rats with neonatal ventral hippocampal lesions. Biol Psychiatry 56: 308–316. doi: 10.1016/j.biopsych.2004.05.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133