[1] | Lodge DM, Deines A, Gherardi F, Yeo DCJ, Arcella T, et al. (2012) Global introductions of crayfishes: evaluating the impact of species invasions on ecosystem services. Annu Rev Ecol Evol Syst, Vol 43 43: 449–472. doi: 10.1146/annurev-ecolsys-111511-103919
|
[2] | Hershner C, Havens KJ (2008) Managing invasive aquatic plants in a changing system: strategic consideration of ecosystem services. Conserv Biol 22: 544–550. doi: 10.1111/j.1523-1739.2008.00957.x
|
[3] | Byrnes J, Stachowicz JJ (2009) Short and long term consequences of increases in exotic species richness on water filtration by marine invertebrates. Ecol Lett 12: 830–841. doi: 10.1111/j.1461-0248.2009.01339.x
|
[4] | Schlaepfer MA, Sax DF, Olden JD (2011) The potential conservation value of non-native species. Conserv Biol 25: 428–437. doi: 10.1111/j.1523-1739.2010.01646.x
|
[5] | Pattemore DE, Wilcove DS (2012) Invasive rats and recent colonist birds partially compensate for the loss of endemic New Zealand pollinators. Proceedings of the Royal Society B-Biological Sciences 279: 1597–1605. doi: 10.1098/rspb.2011.2036
|
[6] | Mattingly WB, Orrock JL, Reif NT (2012) Dendroecological analysis reveals long-term, positive effects of an introduced understory plant on canopy tree growth. Biol Invasions 14: 2639–2646. doi: 10.1007/s10530-012-0259-0
|
[7] | Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84: 1083–1100. doi: 10.1890/0012-9658(2003)084[1083:arotii]2.0.co;2
|
[8] | Peckarsky BL, Abrams PA, Bolnick DI, Dill LM, Grabowski JH, et al. (2008) Revisiting the classics: Considering nonconsumptive effects in textbook examples of predator-prey interactions. Ecology 89: 2416–2425. doi: 10.1890/07-1131.1
|
[9] | Carlton JT (1999) Molluscan invasions in marine and estuarine communities. Malacologia 41: 439–454.
|
[10] | Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: Apparent patterns, processes, and biases. Annu Rev Ecol Syst 31: 481–531. doi: 10.1146/annurev.ecolsys.31.1.481
|
[11] | Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17: 22–27. doi: 10.1016/s0169-5347(01)02358-8
|
[12] | Altman I, Blakeslee AMH, Osio GC, Rillahan CB, Teck SJ, et al. (2011) A practical approach to implementation of ecosystem-based management: a case study using the Gulf of Maine marine ecosystem. Front Ecol Environ 9: 183–189. doi: 10.1890/080186
|
[13] | Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, et al. (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81: 169–193. doi: 10.1890/10-1510.1
|
[14] | Piehler MF, Smyth AR (2011) Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere 2: art12. doi: 10.1890/es10-00082.1
|
[15] | Breitburg DL, Coen LD, Luckenbach MW, Mann R, Posey M, et al. (2000) Oyster reef restoration: convergence of harvest and conservation strategies. J Shellfish Res 19: 371–377.
|
[16] | Newell RIE, Fisher TR, Holyoke RR, Cornwell JC (2005) Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. In: Dame RF, Olenin S, editors. The comparative roles of suspension feeders in ecosystems. Netherlands: Springer pp. 93–120.
|
[17] | Fulford RS, Breitburg DL, Newell RIE, Kemp WM, Luckenbach M (2007) Effects of oyster population restoration strategies on phytoplankton biomass in Chesapeake Bay: a flexible modeling approach. Mar Ecol Prog Ser 336: 43–61. doi: 10.3354/meps336043
|
[18] | Tenore KR, Dunstan WM (1973) Comparison of feeding and biodeposition of 3 bivalves at different food levels. Mar Biol 21: 190–195. doi: 10.1007/bf00355249
|
[19] | Riisgard HU (1988) Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves. Mar Ecol Prog Ser 45: 217–223. doi: 10.3354/meps045217
|
[20] | Pomeroy LR, D'Elia CF, Schaffner LC (2006) Limits to top-down control of phytoplankton by oysters in Chesapeake Bay. Mar Ecol Prog Ser 325: 301–309. doi: 10.3354/meps325301
|
[21] | Levinton JS, Sebastiano D, Doall M, Glick M (2011) Potential for oyster removal of nitrogen: 15 billion can't do the job alone in a NY bay. J Shellfish Res 30: 526–526.
|
[22] | Newell RIE, Kemp WM, Hagy JD, Cerco CF, Testa JM, et al. (2007) Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy, et al. (2006). Mar Ecol Prog Ser 341: 293–298. doi: 10.3354/meps341293
|
[23] | zu Ermgassen PSEZ, Spalding MD, Grizzle RE, Brumbaugh RD (2013) Quantifying the loss of a marine ecosystem service: filtration by the Eastern oyster in US estuaries. Estuaries and Coasts 36: 36–43. doi: 10.1007/s12237-012-9559-y
|
[24] | Dame RF, Spurrier JD, Zingmark RG (1992) In situ metabolism of an oyster reef. J Exp Mar Biol Ecol 164: 147–159. doi: 10.1016/0022-0981(92)90171-6
|
[25] | Smaal AC, Zurburg W (1997) The uptake and release of suspended and dissolved material by oysters and mussels in Marennes-Oleron Bay. Aquat Living Resour 10: 23–30. doi: 10.1051/alr:1997003
|
[26] | Porter ET, Cornwell JC, Sanford LP (2004) Effect of oysters Crassostrea virginica and bottom shear velocity on benthic-pelagic coupling and estuarine water quality. Mar Ecol Prog Ser 271: 61–75. doi: 10.3354/meps271061
|
[27] | Grizzle RE, Greene JK, Coen LD (2008) Seston removal by natural and constructed intertidal Eastern oyster (Crassostrea virginica) reefs: a comparison with previous laboratory studies, and the value of in situ methods. Estuaries and Coasts 31: 1208–1220. doi: 10.1007/s12237-008-9098-8
|
[28] | Grizzle RE, Greene JK, Luckenbach MW, Coen LD (2006) New in situ method for measuring seston uptake by suspension-feeding bivalve molluscs. J Shellfish Res 25: 643–649. doi: 10.2983/0730-8000(2006)25[643:anismf]2.0.co;2
|
[29] | Cox GW (2004) Alien species and evolution: The evolutionary ecology of exotic plants, animals, microbes, and interacting native species. Washington: Island Press.
|
[30] | Freeman AS, Byers JE (2006) Divergent induced responses to an invasive predator in marine mussel populations. Science 313: 831–833. doi: 10.1126/science.1125485
|
[31] | Smee DL, Weissburg MJ (2006) Hard clams (Mercenaria mercenaria) evaluate predation risk using chemical signals from predators and injured conspecifics. J Chem Ecol 32: 605–619. doi: 10.1007/s10886-005-9021-8
|
[32] | Johnston BR, Molis M, Scrosati RA (2012) Predator chemical cues affect prey feeding activity differently in juveniles and adults. Can J Zool 90: 128–132. doi: 10.1139/z11-113
|
[33] | Grabowski JH, Hughes AR, Kimbro DL (2008) Habitat complexity influences cascading effects of multiple predators. Ecology 89: 3413–3422. doi: 10.1890/07-1057.1
|
[34] | Kimbro DL (2012) Tidal regime dictates the cascading consumptive and nonconsumptive effects of multiple predators on a marsh plant. Ecology 93: 334–344. doi: 10.1890/11-0596.1
|
[35] | Hill JM, Weissburg MJ (2013) Predator biomass determines the magnitude of non-consumptive effects (NCEs) in both laboratory and field environments. Oecologia 172: 79–91. doi: 10.1007/s00442-012-2488-4
|
[36] | Hollebone AL, Hay ME (2007) Population dynamics of the non-native crab Petrolisthes armatus invading the South Atlantic Bight at densities of thousands m2. Mar Ecol Prog Ser 336: 211–223. doi: 10.3354/meps336211
|
[37] | Canning-Clode J, Fowler AE, Byers JE, Carlton JT, Ruiz GM (2011) ‘Caribbean creep’ chills out: climate change and marine invasive species. Plos One 6(12): e29657. doi: 10.1371/journal.pone.0029657
|
[38] | SRiMP(SkidawayRiverMonitoringProgram) (2013) Available: http://www.skio.usg.edu/?p=research/bio/?srimp/data.
|
[39] | Walker RL, Tenore KR (1984) The distribution and production of the hard clam, Mercenaria mercenaria, in Wassaw Sound, Georgia. Estuaries 7: 19–27. doi: 10.2307/1351953
|
[40] | Ross PG, Luckenbach MW (2006). Relationships between shell height and dry tissue biomass for the eastern oyster (Crassostrea virginica). 9th International Conference on Shellfish Restoration. Charleston, SC.
|
[41] | Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. New York: Pergamon Press. 173 p.
|
[42] | Verity PG (2002) A decade of change in the Skidaway River estuary. II. Particulate organic carbon, nitrogen, and chlorophyll a. Estuaries 25: 961–975. doi: 10.1007/bf02691344
|
[43] | Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10. doi: 10.1890/10-0340.1
|
[44] | Christian JM, Wilson SD (1999) Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology 80: 2397–2407. doi: 10.1890/0012-9658(1999)080[2397:lteioa]2.0.co;2
|
[45] | Koteen LE, Baldocchi DD, Harte J (2011) Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands. Environ Res Lett 6, doi10.1088/1748-9326/6/4/044001.
|
[46] | Matsuzaki SS, Sasaki T, Akasaka M (2013) Consequences of the introduction of exotic and translocated species and future extirpations on the functional diversity of freshwater fish assemblages. Global Ecol Biogeogr 22: 1071–1082. doi: 10.1111/geb.12067
|
[47] | Caine EA (1975) Feeding and masticatory structures of selected Anomura (Crustacea). J Exp Mar Biol Ecol 18: 277–301. doi: 10.1016/0022-0981(75)90112-4
|
[48] | Newell RIE, Koch EW (2004) Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27: 793–806. doi: 10.1007/bf02912041
|
[49] | McDermott JJ (1960) The predation of oysters and barnacles by crabs of the family Xanthidae. Proc Pennsylvania Acad Sci 34: 199–211.
|
[50] | Eggleston DB (1990) Foraging behavior of the blue crab, Callinectes sapidus, on juvenile oysters, Crassostrea virginica: effects of prey density and size. Bull. Mar. Sci. 46: 62–82.
|
[51] | Whetstone JM, Eversole AG (1981) Effects of size and temperature on mud crab, Panopeus herbstii, predation on hard clams, Mercenaria mercenaria. Estuaries 4: 153–156. doi: 10.2307/1351680
|
[52] | Arnold WS (1984) The effects of prey size, predator size, and sediment composition on the rate of predation of the blue crab, Callinectes sapidus Rathbun, on the hard clam, Mercenaria mercenaria (Linné). J Exp Mar Biol Ecol 80: 207–219. doi: 10.1016/0022-0981(84)90150-3
|
[53] | Hollebone AL, Hay ME (2008) An invasive crab alters interaction webs in a marine community. Biol Invasions 10: 347–358. doi: 10.1007/s10530-007-9134-9
|
[54] | Byers JE (2005) Marine reserves enhance abundance but not competitive impacts of a harvested nonindigenous species. Ecology 86: 487–500. doi: 10.1890/03-0580
|
[55] | Noonburg EG, Byers JE (2005) More harm than good: When invader vulnerability to predators enhances impact on native species. Ecology 86: 2555–2560. doi: 10.1890/05-0143
|