Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis.
References
[1]
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, et al. (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiological reviews 92: 273–366. doi: 10.1152/physrev.00005.2011
[2]
Mellman I, Yarden Y (2013) Endocytosis and cancer. Cold Spring Harbor perspectives in biology 5: a016949. doi: 10.1101/cshperspect.a016949
[3]
Babst M, Katzmann D, Estepa-Sabal E, Meerloo T, Emr SD (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Developmental cell 3: 271–282. doi: 10.1016/s1534-5807(02)00220-4
[4]
Babst M, Katzmann D, Snyder W, Wendland B, Emr SD (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Developmental cell 3: 283–289. doi: 10.1016/s1534-5807(02)00219-8
[5]
Katzmann D, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106: 145–155. doi: 10.1016/s0092-8674(01)00434-2
[6]
Katzmann D, Stefan C, Babst M, Emr SD (2003) Vps27 recruits ESCRT machinery to endosomes during MVB sorting. The Journal of cell biology 162: 413–423. doi: 10.1083/jcb.200302136
[7]
Bilodeau PS, Urbanowski JL, Winistorfer SC, Piper RC (2002) The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biology: 8.
[8]
Piper R, Cooper A, Yang H, Stevens T (1995) VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. The Journal of cell biology 131: 603–617. doi: 10.1083/jcb.131.3.603
[9]
Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J (2002) Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Molecular biology of the cell 13: 1313–1328. doi: 10.1091/mbc.01-10-0525
[10]
Rusten TE, Vaccari T, Stenmark H (2012) Shaping development with ESCRTs. Nature Cell Biology 14: 38–45. doi: 10.1038/ncb2381
[11]
Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Developmental cell 9: 687–698. doi: 10.1016/j.devcel.2005.09.019
[12]
Thompson B, Mathieu J, Sung H, Loeser E, Rorth P, et al. (2005) Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell 9: 711–720. doi: 10.1016/j.devcel.2005.09.020
[13]
Moberg K, Schelble S, Burdick S, Hariharan I (2005) Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Developmental cell 9: 699–710. doi: 10.1016/j.devcel.2005.09.018
Herz H, Chen Z, Scherr H, Lackey M, Bolduc C, et al. (2006) vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development (Cambridge, England) 133: 1871–1880. doi: 10.1242/dev.02356
[16]
Woodfield SE, Graves HK, Hernandez JA, Bergmann A (2013) De-regulation of JNK and JAK/STAT signaling in ESCRT-II mutant tissues cooperatively contributes to neoplastic tumorigenesis. PLoS ONE 8: e56021. doi: 10.1371/journal.pone.0056021
[17]
Herz H-M, Woodfield SE, Chen Z, Bolduc C, Bergmann A, et al. (2009) Common and Distinct Genetic Properties of ESCRT-II Components in Drosophila. PLoS ONE 4: e4165. doi: 10.1371/journal.pone.0004165
[18]
Vaccari T, Rusten TE, Menut L, Nezis IP, Brech A, et al. (2009) Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants. Journal of cell science 122: 2413–2423. doi: 10.1242/jcs.046391
[19]
Stuffers S, Brech A and Stenmark H (2008) ESCRT proteins in physiology and disease. Experimental cell research.
[20]
Lloyd T, Atkinson R, Wu M, Zhou Y, Pennetta G, et al. (2002) Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108: 261–269. doi: 10.1016/s0092-8674(02)00611-6
[21]
Jekely G, Rorth P (2003) Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO reports 4: 1163–1168. doi: 10.1038/sj.embor.7400019
[22]
Vaccari T, Lu H, Kanwar R, Fortini ME, Bilder D (2008) Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. The Journal of cell biology 180: 755–762. doi: 10.1083/jcb.200708127
[23]
Chanut-Delalande H, Jung AC, Baer MM, Lin L, Payre F, et al. (2010) The Hrs/Stam complex acts as a positive and negative regulator of RTK signaling during Drosophila development. PLoS ONE 5: e10245. doi: 10.1371/journal.pone.0010245
[24]
Chanut-Delalande H, Jung AC, Lin L, Baer MM, Bilstein A, et al. (2007) A genetic mosaic analysis with a repressible cell marker screen to identify genes involved in tracheal cell migration during Drosophila air sac morphogenesis. Genetics 176: 2177–2187. doi: 10.1534/genetics.107.073890
[25]
Newsome T, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127: 851–860.
[26]
Tapon N, Ito N, Dickson BJ, Treisman J, Hariharan I (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105: 345–355. doi: 10.1016/s0092-8674(01)00332-4
[27]
Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24: 251–254. doi: 10.1016/s0166-2236(00)01791-4
[28]
Goentoro LA, Yakoby N, Goodhouse J, Schüpbach T, Shvartsman SY (2006) Quantitative analysis of the GAL4/UAS system inDrosophila oogenesis. Genesis 44: 66–74. doi: 10.1002/gene.20184
[29]
Roegiers F, Kavaler J, Tolwinski N, Chou Y-T, Duan H, et al. (2009) Frequent Unanticipated Alleles of lethal giant larvae in Drosophila Second Chromosome Stocks. Genetics 182: 407–410. doi: 10.1534/genetics.109.101808
[30]
Menut L, Vaccari T, Dionne H, Hill J, Wu G, et al. (2007) A mosaic genetic screen for Drosophila neoplastic tumor suppressor genes based on defective pupation. Genetics 177: 1667–1677. doi: 10.1534/genetics.107.078360
[31]
Vaccari T, Duchi S, Cortese K, Tacchetti C, Bilder D (2010) The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development 137: 1825–1832. doi: 10.1242/dev.045484
[32]
Deng W, Althauser C, Ruohola-Baker H (2001) Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development (Cambridge, England) 128: 4737–4746.
[33]
Lopez-Schier H, St Johnston D (2001) Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes & development 15: 1393–1405. doi: 10.1101/gad.200901
[34]
Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in archaea. Science (New York, NY) 322: 1710–1713. doi: 10.1126/science.1165322
[35]
Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science (New York, NY) 316: 1908–1912. doi: 10.1126/science.1143422
[36]
Morita E, Sandrin V, Chung H-Y, Morham SG, Gygi SP, et al. (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. The EMBO journal 26: 4215–4227. doi: 10.1038/sj.emboj.7601850
[37]
Leung K, Dacks J, Field M (2008) Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic (Copenhagen, Denmark).
[38]
Blanc C, Charette SJ, Mattei S, Aubry L, Smith EW, et al. (2009) Dictyostelium Tom1 participates to an ancestral ESCRT-0 complex. Traffic (Copenhagen, Denmark) 10: 161–171. doi: 10.1111/j.1600-0854.2008.00855.x
[39]
Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, et al. (2004) Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. The Journal of biological chemistry 279: 24435–24443. doi: 10.1074/jbc.m400059200
[40]
Gullapalli A, Wolfe BL, Griffin CT, Magnuson T, Trejo JA (2006) An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: Evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Molecular biology of the cell 17: 1228–1238. doi: 10.1091/mbc.e05-09-0899
[41]
Leibfried A, Fricke R, Morgan MJ, Bogdan S, Bellaiche Y (2008) Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Current Biology 18: 1639–1648. doi: 10.1016/j.cub.2008.09.063
[42]
Dukes JD, Fish L, Richardson JD, Blaikley E, Burns S, et al. (2011) Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Molecular biology of the cell 22: 3192–3205. doi: 10.1091/mbc.e11-04-0343
[43]
Kobia F, Duchi S, Deflorian G, Vaccari T (2013) Pharmacologic Inhibition Of Vacuolar H+ ATPase Reduces Physiologic And Oncogenic Notch Signaling. Molecular Oncology 8: 207–220. doi: 10.1016/j.molonc.2013.11.002
[44]
Hori K, Sen A, Kirchhausen T, Artavanis-Tsakonas S (2011) Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. The Journal of cell biology 195: 1005–1015. doi: 10.1083/jcb.201104146
[45]
Schneider M, Troost T, Grawe F, Martinez-Arias A, Klein T (2013) Activation of Notch in lgd mutant cells requires the fusion of late endosomes with the lysosome. Journal of cell science 126: 645–656. doi: 10.1242/jcs.116590
[46]
Yousefian J, Troost T, Grawe F, Sasamura T, Fortini M, et al. (2013) Dmon1 controls recruitment of Rab7 to maturing endosomes in Drosophila. Journal of cell science 126: 1583–1594. doi: 10.1242/jcs.114934